544 research outputs found
Development of a New, Precise Near-infrared Doppler Wavelength Reference: A Fiber Fabry-Perot Interferometer
We present the ongoing development of a commercially available Micron Optics
fiber-Fabry Perot Interferometer as a precise, stable, easy to use, and
economic spectrograph reference with the goal of achieving <1 m/s long term
stability. Fiber Fabry-Perot interferometers (FFP) create interference patterns
by combining light traversing different delay paths. The interference creates a
rich spectrum of narrow emission lines, ideal for use as a precise Doppler
reference. This fully photonic reference could easily be installed in existing
NIR spectrographs, turning high resolution fiber-fed spectrographs into precise
Doppler velocimeters. First light results on the Sloan Digital Sky Survey III
(SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE)
spectrograph and several tests of major support instruments are also presented.
These instruments include a SuperK Photonics fiber supercontinuum laser source
and precise temperature controller. A high resolution spectrum obtained using
the NIST 2-m Fourier transform spectrometer (FTS) is also presented. We find
our current temperature control precision of the FFP to be 0.15 mK,
corresponding to a theoretical velocity stability of 35 cm/s due to temperature
variations of the interferometer cavity.Comment: 16 pages, 11 figures. To appear in the proceedings of the SPIE 2012
Astronomical Instrumentation and Telescopes conferenc
Combining cosmological datasets: hyperparameters and Bayesian evidence
A method is presented for performing joint analyses of cosmological datasets,
in which the weight assigned to each dataset is determined directly by it own
statistical properties. The weights are considered in a Bayesian context as a
set of hyperparameters, which are then marginalised over in order to recover
the posterior distribution as a function only of the cosmological parameters of
interest. In the case of a Gaussian likelihood function, this marginalisation
may be performed analytically. Calculation of the Bayesian evidence for the
data, with and without the introduction of hyperparameters, enables a direct
determination of whether the data warrant the introduction of weights into the
analysis; this generalises the standard likelihood ratio approach to model
comparison. The method is illustrated by application to the classic toy problem
of fitting a straight line to a set of data. A cosmological illustration of the
technique is also presented, in which the latest measurements of the cosmic
microwave background power spectrum are used to infer constraints on
cosmological parameters.Comment: 12 pages, 6 figures, submitted to MNRA
A seminormal form for partition algebras
Using a new presentation for partition algebras (J. Algebraic Combin.
37(3):401-454, 2013), we derive explicit combinatorial formulae for the
seminormal representations of the partition algebras. These results generalise
to the partition algebras the classical formulae given by Young for the
symmetric group.Comment: Published version. 51 pages, includes figures and table
The Unusual Evolution of Hurricane Arthur 2014
Hurricane Arthur (2014) was an early season hurricane that had its roots in a convective complex in the Southern Plains of the U.S. As the complex moved into northern Texas, a Mesoscale Convective Vortex (MCV) formed and drifted towards the east of the southern U.S. for a few days before emerging over the southwest Atlantic near South Carolina. The MCV drifted south and slowly acquired tropical characteristics, eventually becoming a Category 2 hurricane that would affect much of eastern North Carolina prior to the 4th of July holiday weekend. Arthur continued up the coast, brushing portions of southeast New England and merged with an upper-level low, completing a full tropical to extratropical-transition in the process, producing damaging wind gusts in portions of the Canadian Maritimes. As part of the GOES-R and JPSS Satellite Proving Grounds, multiple proxy and operational products were available to analyze and forecast this complex evolution. The Storm Prediction Center had products available to monitor the initial severe thunderstorm aspect, while the National Hurricane Center and Ocean Prediction Center were able to monitor the tropical and extratropical transition of Arthur using various convective and red, green, blue (RGB) products that have been introduced in recent years. This paper will discuss Arthur's evolution through the eyes of the various Satellite Proving Ground demonstrations
Horn Coupled Multichroic Polarimeters for the Atacama Cosmology Telescope Polarization Experiment
Multichroic polarization sensitive detectors enable increased sensitivity and
spectral coverage for observations of the Cosmic Microwave Background (CMB). An
array optimized for dual frequency detectors can provide 1.7 times gain in
sensitivity compared to a single frequency array. We present the design and
measurements of horn coupled multichroic polarimeters encompassing the 90 and
150 GHz frequency bands and discuss our plans to field an array of these
detectors as part of the ACTPol project
Towards Space-like Photometric Precision from the Ground with Beam-Shaping Diffusers
We demonstrate a path to hitherto unachievable differential photometric
precisions from the ground, both in the optical and near-infrared (NIR), using
custom-fabricated beam-shaping diffusers produced using specialized
nanofabrication techniques. Such diffusers mold the focal plane image of a star
into a broad and stable top-hat shape, minimizing photometric errors due to
non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and
telescope-induced variable aberrations seen in defocusing. This PSF reshaping
significantly increases the achievable dynamic range of our observations,
increasing our observing efficiency and thus better averages over
scintillation. Diffusers work in both collimated and converging beams. We
present diffuser-assisted optical observations demonstrating
ppm precision in 30 minute bins on a nearby bright star
16-Cygni A (V=5.95) using the ARC 3.5m telescope---within a factor of 2
of Kepler's photometric precision on the same star. We also show a transit of
WASP-85-Ab (V=11.2) and TRES-3b (V=12.4), where the residuals bin down to
ppm in 30 minute bins for WASP-85-Ab---a factor of 4 of
the precision achieved by the K2 mission on this target---and to 101ppm for
TRES-3b. In the NIR, where diffusers may provide even more significant
improvements over the current state of the art, our preliminary tests have
demonstrated ppm precision for a star on the 200"
Hale Telescope. These photometric precisions match or surpass the expected
photometric precisions of TESS for the same magnitude range. This technology is
inexpensive, scalable, easily adaptable, and can have an important and
immediate impact on the observations of transits and secondary eclipses of
exoplanets.Comment: Accepted for publication in ApJ. 30 pages, 20 figure
Southern Cosmology Survey I: Optical Cluster Detections and Predictions for the Southern Common-Area Millimeter-Wave Experiments
We present first results from the Southern Cosmology Survey, a new
multiwavelength survey of the southern sky coordinated with the Atacama
Cosmology Telescope (ACT), a recently commissioned ground-based mm-band Cosmic
Microwave Background experiment. This article presents a full analysis of
archival optical multi-band imaging data covering an 8 square degree region
near right ascension 23 hours and declination -55 degrees, obtained by the
Blanco 4-m telescope and Mosaic-II camera in late 2005. We describe the
pipeline we have developed to process this large data volume, obtain accurate
photometric redshifts, and detect optical clusters. Our cluster finding process
uses the combination of a matched spatial filter, photometric redshift
probability distributions and richness estimation. We present photometric
redshifts, richness estimates, luminosities, and masses for 8 new
optically-selected clusters with mass greater than 3\times10^{14}M_{\sun} at
redshifts out to 0.7. We also present estimates for the expected
Sunyaev-Zel'dovich effect (SZE) signal from these clusters as specific
predictions for upcoming observations by ACT, the South Pole Telescope and
Atacama Pathfinder Experiment.Comment: 12 pages, 8 figures, accepted in ApJ. Reflects changes from referee
as well as a new Table providing mass estimates and positions for all
clusters in the surve
A Prograde, Low-Inclination Orbit for the Very Hot Jupiter WASP-3b
We present new spectroscopic and photometric observations of the transiting
exoplanetary system WASP-3. Spectra obtained during two separate transits
exhibit the Rossiter-McLaughlin (RM) effect and allow us to estimate the
sky-projected angle between the planetary orbital axis and the stellar rotation
axis, lambda = 3.3^{+2.5}_{-4.4} degrees. This alignment between the axes
suggests that WASP-3b has a low orbital inclination relative to the equatorial
plane of its parent star. During our first night of spectroscopic measurements,
we observed an unexpected redshift briefly exceeding the expected sum of the
orbital and RM velocities by 140 m/s. This anomaly could represent the
occultation of material erupting from the stellar photosphere, although it is
more likely to be an artifact caused by moonlight scattered into the
spectrograph.Comment: 23 pages, 4 figures, Accepted for publication in The Astrophysical
Journal, Replacement includes revised citation
Shared Neuroanatomical Substrates of Impaired Phonological Working Memory Across Reading Disability and Autism
Background Individuals with reading disability and individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading and social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. Methods White-matter structural connectivity via diffusion weighted imaging was examined in 64 children, age 5 to 17 years, with reading disability, ASD, or typical development, who were matched on age, gender, intelligence, and diffusion data quality. Results Children with reading disability and children with ASD exhibited reduced PWM compared with children with typical development. The two diagnostic groups showed altered white matter microstructure in the temporoparietal portion of the left arcuate fasciculus and in the occipitotemporal portion of the right inferior longitudinal fasciculus (ILF), as indexed by reduced fractional anisotropy and increased radial diffusivity. Moreover, the structural integrity of the right ILF was positively correlated with PWM ability in the two diagnostic groups but not in the typically developing group. Conclusions These findings suggest that impaired PWM is transdiagnostically associated with shared neuroanatomical abnormalities in ASD and reading disability. Microstructural characteristics in left arcuate fasciculus and right ILF may play important roles in the development of PWM. The right ILF may support a compensatory mechanism for children with impaired PWM
- …
