80,246 research outputs found

    Holloway, et al. v. Best Buy, Co.

    Get PDF

    The interior structure of rotating black holes 2. Uncharged black holes

    Full text link
    (Abridged) A solution is obtained for the interior structure of an uncharged rotating black hole that accretes a collisionless fluid. The solution is conformally stationary, axisymmetric, and conformally separable, possessing a conformal Killing tensor. Hyper-relativistic counter-streaming between collisionless ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. As ingoing and outgoing streams approach the inner horizon, they focus into twin narrow beams directed along the ingoing and outgoing principal null directions, regardless of the initial angular motions of the streams. The radial energy-momentum of the counter-streaming beams gravitationally accelerates the streams even faster along the principal directions, leading to exponential growth in the streaming density and pressure, and in the Weyl curvature and mass function. At exponentially large density and curvature, inflation stalls, and the spacetime collapses. As the spacetime collapses, the angular motions of the freely-falling streams grow. When the angular motion has become comparable to the radial motion, which happens when the conformal factor has shrunk to an exponentially tiny scale, conformal separability breaks down, and the solution fails. The condition of conformal separability prescribes the form of the ingoing and outgoing accretion flows incident on the inner horizon. The dominant radial part of the solution holds provided that the densities of ingoing and outgoing streams incident on the inner horizon are uniform, independent of latitude; that is, the accretion flow is "monopole." The sub-dominant angular part of the solution requires a special non-radial pattern of angular motion of streams incident on the inner horizon. The prescribed angular pattern cannot be achieved if the collisionless streams fall freely from outside the horizon.Comment: Version 1: 30 pages, 1 figure. Version 2: Extensively revised, logic tightened, derivation more elegant. 37 pages, 1 figure. Version 3: Minor revisions to match published version. Mathematica notebook available at http://jila.colorado.edu/~ajsh/rotatinginflationary/rotatinginflationary.n

    Cyclic group actions and embedded spheres in 4-manifolds

    Full text link
    In this note we derive an upper bound on the number of 2-spheres in the fixed point set of a smooth and homologically trivial cyclic group action of prime order on a simply-connected 4-manifold. This improves the a priori bound which is given by one half of the Euler characteristic of the 4-manifold. The result also shows that in some cases the 4-manifold does not admit such actions of a certain order at all or that any such action has to be pseudofree.Comment: 13 pages; to appear in Proc. Amer. Math. So

    The interior structure of rotating black holes 3. Charged black holes

    Full text link
    This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistc counter-streaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The sub-dominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.Comment: Version 1: 12 pages, no figures. Version 2: Extensively revised, logic tightened, derivation more elegant. 18 pages, no figures. Version 3: Minor revisions to match published version. Mathematica notebook available at http://jila.colorado.edu/~ajsh/rotatinginflationary/rotatinginflationary.n
    corecore