2,728 research outputs found
The Diagonalized Newton Algorithm for Nonnegative Matrix Factorization
Non-negative matrix factorization (NMF) has become a popular machine learning
approach to many problems in text mining, speech and image processing,
bio-informatics and seismic data analysis to name a few. In NMF, a matrix of
non-negative data is approximated by the low-rank product of two matrices with
non-negative entries. In this paper, the approximation quality is measured by
the Kullback-Leibler divergence between the data and its low-rank
reconstruction. The existence of the simple multiplicative update (MU)
algorithm for computing the matrix factors has contributed to the success of
NMF. Despite the availability of algorithms showing faster convergence, MU
remains popular due to its simplicity. In this paper, a diagonalized Newton
algorithm (DNA) is proposed showing faster convergence while the implementation
remains simple and suitable for high-rank problems. The DNA algorithm is
applied to various publicly available data sets, showing a substantial speed-up
on modern hardware.Comment: 8 pages + references; International Conference on Learning
Representations, 201
Character-Word LSTM Language Models
We present a Character-Word Long Short-Term Memory Language Model which both
reduces the perplexity with respect to a baseline word-level language model and
reduces the number of parameters of the model. Character information can reveal
structural (dis)similarities between words and can even be used when a word is
out-of-vocabulary, thus improving the modeling of infrequent and unknown words.
By concatenating word and character embeddings, we achieve up to 2.77% relative
improvement on English compared to a baseline model with a similar amount of
parameters and 4.57% on Dutch. Moreover, we also outperform baseline word-level
models with a larger number of parameters
Radar and video as the perfect match : a cooperative method for sensor fusion
Accurate detection and tracking of road users is essential for driverless cars and many other smart
mobility applications. As no single sensor can provide the required accuracy and robustness, the output
from several sensors needs to be combined. Especially radar and video are a good match, because their
weaknesses and strengths complement each other. Researchers from IPI – an imec research group at
Ghent University – developed a new technique to optimize radar-video fusion by exchanging information
at an earlier stage
Improving Source Separation via Multi-Speaker Representations
Lately there have been novel developments in deep learning towards solving
the cocktail party problem. Initial results are very promising and allow for
more research in the domain. One technique that has not yet been explored in
the neural network approach to this task is speaker adaptation. Intuitively,
information on the speakers that we are trying to separate seems fundamentally
important for the speaker separation task. However, retrieving this speaker
information is challenging since the speaker identities are not known a priori
and multiple speakers are simultaneously active. There is thus some sort of
chicken and egg problem. To tackle this, source signals and i-vectors are
estimated alternately. We show that blind multi-speaker adaptation improves the
results of the network and that (in our case) the network is not capable of
adequately retrieving this useful speaker information itself
- …
