63 research outputs found
Industrial simulation with animation
This thesis examines and evaluates the new simulation language PCModel. Prior to the arrival of PCModel, simulation via computer typically resulted in pages of statistics compiled over the duration of the simulation. PCModel\u27s approach is to simulate the model on the display before the user in real time. Additionally, user interaction is supported to allow changes to be made throughout the simulation run.
The evaluation of PCModel is accomplished through inspection of a pair of examples already simulated in a conventional simulation language. The examples show the relative strong and weak points of the language, as well as demonstrating how PCModel is used --Abstract, page ii
Art Teaching and American Society: An Exploration of How Art Makes Us Think and Why America Needs It Right Now
Robot Pedagogics: The Adaptation, Analysis, and Computer Control of a Model Manipulator
The subject of robotics is addressed by many different fields, among them computer science, electrical engineering, and mechanical engineering. This work is an attempt to bring together all of these aspects from the perspective of a computer science background. Different techniques are considered and reconciled with one another in the analytical area, while detail and explanation are added in all areas that were not previously available. In addition, geometrical interpretations arc presented for concepts that have heretofore been presented only in the form of equations
The meaning-making of Bondens egen Marknad, a farmers market organization
The revitalization of farmers markets is a growing alternative to larger scale food systems that connects farmers directly with consumers in urban areas. Why is this important? Why do producers and consumers come to the farmers market? Moreover, what implications will this have on local farmers and the rest of our society? In this study, we look at the perspectives of participants in the "Bondens egen Marknad" (Farmers own Market) in Sweden to understand what the farmers market means for people, who come there, why they come, what interaction takes place and how this meaning is shaped by the larger societal context. Using qualitative interviews and Symbolic Interactionist theory as a guide, we search for the answers to these questions by looking at the communicative phenomenon of meaning-making. We explore different interpretations of the Bondens egen Marknad: what does local food and direct contact mean to the producers, how did the original concept of the farmers market influence the creation of the shared message, how do the farmers describe consumers and producers in relation to their motives and goals, and the perceived significance of trust-building, interdependence, and building a closer relationship between consumers and producers at the Bondens egen Marknad
Industrial Simulation with Animation
This thesis examines and evaluates the new simulation language PCModel. Prior to the arrival of PCModel, simulation via computer typically resulted in pages of statistics compiled over the duration of the simulation. PCModel\u27s approach is to simulate the model on the display before the user in real time. Additionally, user interaction is supported to allow changes to be made throughout the simulation run.
The evaluation of PCModel is accomplished through inspection of a pair of examples already simulated in a conventional simulation language. The examples show the relative strong and weak points of the language, as well as demonstrating how PCModel is used
Recommended from our members
Critical time step for a bilinear laminated composite Mindlin shell element.
The critical time step needed for explicit time integration of laminated shell finite element models is presented. Each layer is restricted to be orthotropic when viewed from a properly oriented material coordinate system. Mindlin shell theory is used in determining the laminated response that includes the effects of transverse shear. The effects of the membrane-bending coupling matrix from the laminate material model are included. Such a coupling matrix arises even in the case of non-symmetric lay-ups of differing isotropic layers. Single point integration is assumed to be used in determining a uniform strain response from the element. Using a technique based upon one from the literature, reduced eigenvalue problems are established to determine the remaining non-zero frequencies. It is shown that the eigenvalue problem arising from the inplane normal and shear stresses is decoupled from that arising from the transverse shear stresses. A verification example is presented where the exact and approximate results are compared
Recommended from our members
Laminated composites modeling in ADAGIO/PRESTO.
A linear elastic constitutive equation for modeling fiber-reinforced laminated composites via shell elements is specified. The effects of transverse shear are included using first-order shear deformation theory. The proposed model is written in a rate form for numerical evaluation in the Sandia quasi-statics code ADAGIO and explicit dynamics code PRESTO. The equation for the critical time step needed for explicit dynamics is listed assuming that a flat bilinear Mindlin shell element is used in the finite element representation. Details of the finite element implementation and usage are given. Finally, some of the verification examples that have been included in the ADAGIO regression test suite are presented
Recommended from our members
Constitutive models in LAME.
The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented and the methods necessary for achieving accurate and efficient solutions have been incorporated. The most important method is the getStress function where the actual material model evaluation takes place. Obviously, all material models incorporate this function. The initialize function is included in most material models. The initialize function is called once at the beginning of an analysis and its primary purpose is to initialize the material state variables associated with the model. Many times, there is some information which can be set once per load step. For instance, we may have temperature dependent material properties in an analysis where temperature is prescribed. Instead of setting those parameters at each iteration in a time step, it is much more efficient to set them once per time step at the beginning of the step. These types of load step initializations are performed in the loadStepInit method. The final function used by many models is the pcElasticModuli method which changes the moduli that are to be used by the elastic preconditioner in Adagio. The moduli for the elastic preconditioner are set during the initialization of Adagio. Sometimes, better convergence can be achieved by changing these moduli for the elastic preconditioner. For instance, it typically helps to modify the preconditioner when the material model has temperature dependent moduli. For many material models, it is not necessary to change the values of the moduli that are set initially in the code. Hence, those models do not have pcElasticModuli functions. All four of these methods receive information from the matParams structure as described by Scherzinger and Hammerand
Library of Advanced Materials for Engineering : LAME.
Constitutive modeling is an important aspect of computational solid mechanics. Sandia National Laboratories has always had a considerable effort in the development of constitutive models for complex material behavior. However, for this development to be of use the models need to be implemented in our solid mechanics application codes. In support of this important role, the Library of Advanced Materials for Engineering (LAME) has been developed in Engineering Sciences. The library allows for simple implementation of constitutive models by model developers and access to these models by application codes. The library is written in C++ and has a very simple object oriented programming structure. This report summarizes the current status of LAME
Testing of constitutive models in LAME.
Constitutive models for computational solid mechanics codes are in LAME--the Library of Advanced Materials for Engineering. These models describe complex material behavior and are used in our finite deformation solid mechanics codes. To ensure the correct implementation of these models, regression tests have been created for constitutive models in LAME. A selection of these tests is documented here. Constitutive models are an important part of any solid mechanics code. If an analysis code is meant to provide accurate results, the constitutive models that describe the material behavior need to be implemented correctly. Ensuring the correct implementation of constitutive models is the goal of a testing procedure that is used with the Library of Advanced Materials for Engineering (LAME) (see [1] and [2]). A test suite for constitutive models can serve three purposes. First, the test problems provide the constitutive model developer a means to test the model implementation. This is an activity that is always done by any responsible constitutive model developer. Retaining the test problem in a repository where the problem can be run periodically is an excellent means of ensuring that the model continues to behave correctly. A second purpose of a test suite for constitutive models is that it gives application code developers confidence that the constitutive models work correctly. This is extremely important since any analyst that uses an application code for an engineering analysis will associate a constitutive model in LAME with the application code, not LAME. Therefore, ensuring the correct implementation of constitutive models is essential for application code teams. A third purpose of a constitutive model test suite is that it provides analysts with example problems that they can look at to understand the behavior of a specific model. Since the choice of a constitutive model, and the properties that are used in that model, have an enormous effect on the results of an analysis, providing problems that highlight the behavior of various constitutive models to the engineer can be of great benefit. LAME is currently implemented in the Sierra based solid mechanics codes Adagio [3] and Presto [4]. The constitutive models in LAME are available in both codes. Due to the nature of a transient dynamics code--e.g. Presto--it is difficult to test a constitutive model due to inertia effects that show up in the solution. Therefore the testing of constitutive models is primarily done in Adagio. All of the test problems detailed in this report are run in Adagio. It is the goal of the constitutive model test suite to provide a useful service for the constitutive model developer, application code developer and engineer that uses the application code. Due to the conflicting needs and tight time constraints on solid mechanics code development, no requirements exist for implementing test problems for constitutive models. Model developers are strongly encouraged to provide test problems and document those problems, but given the choice of having a model without a test problem or no model at all, certain requirements must be kept loose. A flexible code development environment, especially with regards to research and development in constitutive modeling, is essential to the success of such an environment. This report provides documentation of a number of tests for the constitutive models in LAME. Each section documents a separate test with a brief description of the model, the test problem and the results. This report is meant to be updated periodically as more test problems are created and put into the test suite
- …
