99,432 research outputs found
Criticality and Continuity of Explosive Site Percolation in Random Networks
This Letter studies the critical point as well as the discontinuity of a
class of explosive site percolation in Erd\"{o}s and R\'{e}nyi (ER) random
network. The class of the percolation is implemented by introducing a best-of-m
rule. Two major results are found: i). For any specific , the critical
percolation point scales with the average degree of the network while its
exponent associated with is bounded by -1 and . ii).
Discontinuous percolation could occur on sparse networks if and only if
approaches infinite. These results not only generalize some conclusions of
ordinary percolation but also provide new insights to the network robustness.Comment: 5 pages, 5 figure
Dynamics of compressible edge and bosonization
We work out the dynamics of the compressible edge of the quantum Hall system
based on the electrostatic model of Chklovskii et al.. We introduce a
generalized version of Wen's hydrodynamic quantization approach to the dynamics
of sharp edge and rederive Aleiner and Glazman's earlier result of multiple
density modes. Bosonic operators of density excitations are used to construct
fermions at the interface of the compressible and incompressible region. We
also analyze the dynamics starting with the second-quantized Hamiltonian in the
lowest Landau level and work out the time development of density operators.
Contrary to the hydrodynamic results, the density modes are strongly coupled.
We argue that the coupling suppresses the propagation of all acoustic modes,
and that the excitations with large wavevectors are subject to decay due to
coupling to the dissipative acoustic modes.A possible correction to the
tunneling density of states is discussed.Comment: 7 pages, Revtex, 1 figur
Generating EPR beams in a cavity optomechanical system
We propose a scheme to produce continuous variable entanglement between
phase-quadrature amplitudes of two light modes in an optomechanical system. For
proper driving power and detuning, the entanglement is insensitive with bath
temperature and of mechanical oscillator. Under realistic experimental
conditions, we find that the entanglement could be very large even at room
temperature.Comment: 4.1 pages, 4 figures, comments are welcome; to appear in PRA,
published version with corrections of typo
Iwasawa Effects in Multi-layer Optics
There are many two-by-two matrices in layer optics. It is shown that they can
be formulated in terms of a three-parameter group whose algebraic property is
the same as the group of Lorentz transformations in a space with two space-like
and one time-like dimensions, or the group which is a standard
theoretical tool in optics. Among the interesting mathematical properties of
this group, the Iwasawa decomposition drastically simplifies the matrix algebra
under certain conditions, and leads to a concise expression for the S-matrix
for transmitted and reflected rays. It is shown that the Iwasawa effect can be
observed in multi-layer optics, and a sample calculation of the S-matrix is
given.Comment: RevTex 10 pages including 1 psfi
Multi-scaling mix and non-universality between population and facility density
The distribution of facilities is closely related to our social economic
activities. Recent studies have reported a scaling relation between population
and facility density with the exponent depending on the type of facility. In
this paper, we show that generally this exponent is not universal for a
specific type of facility. Instead by using Chinese data we find that it
increases with Per Capital GDP. Thus our observed scaling law is actually a
mixture of some multi-scaling relations. This result indicates that facilities
may change their public or commercial attributes according to the outside
environment. We argue that this phenomenon results from the unbalanced regional
economic level and suggest a modification for previous model by introducing
consuming capacity. The modified model reproduces most of our observed
properties.Comment: 6 pages, 5 figure
Phenomenology of High Energy Neutrinos in Low-Scale Quantum Gravity Models
We show that neutrino telescopes, optimized for detecting neutrinos of TeV to
PeV energy, can reveal threshold effects associated with TeV-scale gravity. The
signature is an increase with energy of the cross section beyond what is
predicted by the Standard Model. The advantage of the method is that the
neutrino cross section is measured in an energy region where i) the models are
characteristically distinguishable and ii) the Standard Model neutrino cross
section can be reliably calculated so that any deviation can be conclusively
identified.Comment: 4 pages, Revtex (PRL format), 4 postscript figures. Version to appear
in Physical Review Letter
Experimental study of contact transition control incorporating joint acceleration feedback
Joint acceleration and velocity feedbacks are incorporated into a classical internal force control of a robot in contact with the environment. This is intended to achieve a robust contact transition and force tracking performance for varying unknown environments, without any need of adjusting the controller parameters, A unified control structure is proposed for free motion, contact transition, and constrained motion in view of the consumption of the initial kinetic energy generated by a nonzero impact velocity. The influence of the velocity and acceleration feedbacks, which are introduced especially for suppressing the transition oscillation, on the postcontact tracking performance is discussed. Extensive experiments are conducted on the third joint of a three-link direct-drive robot to verify the proposed scheme for environments of various stiffnesses, including elastic (sponge), less elastic (cardboard), and hard (steel plate) surfaces. Results are compared with those obtained by the transition control scheme without the acceleration feedback. The ability of the proposed control scheme in resisting the force disturbance during the postcontact period is also experimentally investigated
Pseudogap and Fermi-arc Evolution in the Phase-fluctuation Scenario
Pseudogap phenomena and the formation of Fermi arcs in underdoped cuprates
are numerically studied in the presence of phase fluctuations that are
simulated by an XY model. Most importantly the spectral function for each Monte
Carlo sample is calculated directly and efficiently by the Chebyshev
polynomials without having to diagonalize the fermion Hamiltonian, which
enables us to handle a system large enough to achieve sufficient
momentum/energy resolution. We find that the momentum dependence of the energy
gap is identical to that of a pure d-wave superconductor well below the
KT-transition temperature (), while displays an upturn deviation from
with increasing temperature. An abrupt onset of the Fermi
arcs is observed above and the arc length exhibits a similar
temperature dependence to the thermally activated vortex excitations.Comment: 5 pages, 4 figure
- …
