99,432 research outputs found

    Criticality and Continuity of Explosive Site Percolation in Random Networks

    Full text link
    This Letter studies the critical point as well as the discontinuity of a class of explosive site percolation in Erd\"{o}s and R\'{e}nyi (ER) random network. The class of the percolation is implemented by introducing a best-of-m rule. Two major results are found: i). For any specific mm, the critical percolation point scales with the average degree of the network while its exponent associated with mm is bounded by -1 and 0.5\sim-0.5. ii). Discontinuous percolation could occur on sparse networks if and only if mm approaches infinite. These results not only generalize some conclusions of ordinary percolation but also provide new insights to the network robustness.Comment: 5 pages, 5 figure

    Dynamics of compressible edge and bosonization

    Full text link
    We work out the dynamics of the compressible edge of the quantum Hall system based on the electrostatic model of Chklovskii et al.. We introduce a generalized version of Wen's hydrodynamic quantization approach to the dynamics of sharp edge and rederive Aleiner and Glazman's earlier result of multiple density modes. Bosonic operators of density excitations are used to construct fermions at the interface of the compressible and incompressible region. We also analyze the dynamics starting with the second-quantized Hamiltonian in the lowest Landau level and work out the time development of density operators. Contrary to the hydrodynamic results, the density modes are strongly coupled. We argue that the coupling suppresses the propagation of all acoustic modes, and that the excitations with large wavevectors are subject to decay due to coupling to the dissipative acoustic modes.A possible correction to the tunneling density of states is discussed.Comment: 7 pages, Revtex, 1 figur

    Generating EPR beams in a cavity optomechanical system

    Full text link
    We propose a scheme to produce continuous variable entanglement between phase-quadrature amplitudes of two light modes in an optomechanical system. For proper driving power and detuning, the entanglement is insensitive with bath temperature and QQ of mechanical oscillator. Under realistic experimental conditions, we find that the entanglement could be very large even at room temperature.Comment: 4.1 pages, 4 figures, comments are welcome; to appear in PRA, published version with corrections of typo

    Iwasawa Effects in Multi-layer Optics

    Get PDF
    There are many two-by-two matrices in layer optics. It is shown that they can be formulated in terms of a three-parameter group whose algebraic property is the same as the group of Lorentz transformations in a space with two space-like and one time-like dimensions, or the Sp(2)Sp(2) group which is a standard theoretical tool in optics. Among the interesting mathematical properties of this group, the Iwasawa decomposition drastically simplifies the matrix algebra under certain conditions, and leads to a concise expression for the S-matrix for transmitted and reflected rays. It is shown that the Iwasawa effect can be observed in multi-layer optics, and a sample calculation of the S-matrix is given.Comment: RevTex 10 pages including 1 psfi

    Multi-scaling mix and non-universality between population and facility density

    Full text link
    The distribution of facilities is closely related to our social economic activities. Recent studies have reported a scaling relation between population and facility density with the exponent depending on the type of facility. In this paper, we show that generally this exponent is not universal for a specific type of facility. Instead by using Chinese data we find that it increases with Per Capital GDP. Thus our observed scaling law is actually a mixture of some multi-scaling relations. This result indicates that facilities may change their public or commercial attributes according to the outside environment. We argue that this phenomenon results from the unbalanced regional economic level and suggest a modification for previous model by introducing consuming capacity. The modified model reproduces most of our observed properties.Comment: 6 pages, 5 figure

    Phenomenology of High Energy Neutrinos in Low-Scale Quantum Gravity Models

    Get PDF
    We show that neutrino telescopes, optimized for detecting neutrinos of TeV to PeV energy, can reveal threshold effects associated with TeV-scale gravity. The signature is an increase with energy of the cross section beyond what is predicted by the Standard Model. The advantage of the method is that the neutrino cross section is measured in an energy region where i) the models are characteristically distinguishable and ii) the Standard Model neutrino cross section can be reliably calculated so that any deviation can be conclusively identified.Comment: 4 pages, Revtex (PRL format), 4 postscript figures. Version to appear in Physical Review Letter

    Experimental study of contact transition control incorporating joint acceleration feedback

    Get PDF
    Joint acceleration and velocity feedbacks are incorporated into a classical internal force control of a robot in contact with the environment. This is intended to achieve a robust contact transition and force tracking performance for varying unknown environments, without any need of adjusting the controller parameters, A unified control structure is proposed for free motion, contact transition, and constrained motion in view of the consumption of the initial kinetic energy generated by a nonzero impact velocity. The influence of the velocity and acceleration feedbacks, which are introduced especially for suppressing the transition oscillation, on the postcontact tracking performance is discussed. Extensive experiments are conducted on the third joint of a three-link direct-drive robot to verify the proposed scheme for environments of various stiffnesses, including elastic (sponge), less elastic (cardboard), and hard (steel plate) surfaces. Results are compared with those obtained by the transition control scheme without the acceleration feedback. The ability of the proposed control scheme in resisting the force disturbance during the postcontact period is also experimentally investigated

    Pseudogap and Fermi-arc Evolution in the Phase-fluctuation Scenario

    Get PDF
    Pseudogap phenomena and the formation of Fermi arcs in underdoped cuprates are numerically studied in the presence of phase fluctuations that are simulated by an XY model. Most importantly the spectral function for each Monte Carlo sample is calculated directly and efficiently by the Chebyshev polynomials without having to diagonalize the fermion Hamiltonian, which enables us to handle a system large enough to achieve sufficient momentum/energy resolution. We find that the momentum dependence of the energy gap is identical to that of a pure d-wave superconductor well below the KT-transition temperature (TKTT_{KT}), while displays an upturn deviation from coskxcosky\cos k_x - \cos k_y with increasing temperature. An abrupt onset of the Fermi arcs is observed above TKTT_{KT} and the arc length exhibits a similar temperature dependence to the thermally activated vortex excitations.Comment: 5 pages, 4 figure
    corecore