11,753 research outputs found
Direct Observation of Long-Term Durability of Superconductivity in YBaCuO-AgO Composites
We report direct observation of long-term durability of superconductivity of
several YBaCuO-AgO composites that were first prepared and
studied almost 14 years ago [J. J. Lin {\it et al}., Jpn. J. Appl. Phys. {\bf
29}, 497 (1990)]. Remeasurements performed recently on both resistances and
magnetizations indicate a sharp critical transition temperature at 91 K. We
also find that such long-term environmental stability of high-temperature
superconductivity can only be achieved in YBaCuO with AgO
addition, but not with pure Ag addition.Comment: to be published in Jpn. J. Appl. Phy
Design of OsII-based Sensitizers for Dye-Sensitized Solar Cells:Influence of Heterocyclic Ancillaries
A series of OsII sensitizers (TFOS-x, in which x=1, 2, or 3) with a single 4,4′-dicarboxy-2,2′-dipyridine (H2dcbpy) anchor and two chelating 2-pyridyl (or 2-pyrimidyl) triazolate ancillaries was successfully prepared. Single-crystal X-ray structural analysis showed that the core geometry of the OsII-based sensitizers consisted of one H2dcbpy unit and two eclipsed cis-triazolate fragments; this was notably different from the RuII-based counterparts, in which the azolate (both pyrazolate and triazolate) fragments are located at the mutual trans-positions. The basic properties were extensively probed by using spectroscopic and electrochemical methods as well as time-dependent density functional theory (TD-DFT) calculations. Fabrication of dye-sensitized solar cells (DSCs) was then attempted by using the I−/I3−-based electrolyte solution. One such DSC device, which utilized TFOS-2 as the sensitizer, showed promising performance characteristics with a short-circuit current density (JSC) of 15.7 mA cm−2, an open-circuit voltage of 610 mV, a fill factor of 0.63, and a power conversion efficiency of 6.08 % under AM 1.5G simulated one-sun irradiation. Importantly, adequate incident photon-to-current conversion efficiency performances were observed for all TFOS derivatives over the wide spectral region of 450 to 950 nm, showing a panchromatic light harvesting capability that extended into the near-infrared regime. Our results underlined a feasible strategy for maximizing JSC and increasing the efficiency of DSCs
Two-Stage Model for Exchange Rate Forecasting by EMD and Random Forest
This study applied random forest (RF) and empirical mode decomposition (EMD) techniques to exchange rate forecasting. The aim of this study is to examine the feasibility of the proposed EMD-RF model in exchange rate forecasting. For this purpose, the original exchange rate series were first decomposed into a finite, and often small, number of intrinsic mode functions (IMFs) and one residual component. Then, a random forest model is constructed to forecast these IMFs and residual value individually, and then all these forecasted values are aggregated to produce the final forecasted value for exchange rates. The daily USD/NTD, USD/JPY, USD/HKD and USD/AUD exchange rates were employed as the data set. The experimental results are that MAPE for the four data sets are, respectively, 0.278%, 1.143%, 0.153% and 5.944%, which shows good performance according to the 10% threshold suggested by Lewis
Administrated grouper (Epinephelus coioides) recombinant interleukin-6 as a fish immunestimulatant via various administrated routes
Statistical mechanics approach to some problems in conformal geometry
A weak law of large numbers is established for a sequence of systems of N
classical point particles with logarithmic pair potential in \bbR^n, or
\bbS^n, n\in \bbN, which are distributed according to the configurational
microcanonical measure , or rather some regularization thereof,
where H is the configurational Hamiltonian and E the configurational energy.
When with non-extensive energy scaling E=N^2 \vareps, the
particle positions become i.i.d. according to a self-consistent Boltzmann
distribution, respectively a superposition of such distributions. The
self-consistency condition in n dimensions is some nonlinear elliptic PDE of
order n (pseudo-PDE if n is odd) with an exponential nonlinearity. When n=2,
this PDE is known in statistical mechanics as Poisson-Boltzmann equation, with
applications to point vortices, 2D Coulomb and magnetized plasmas and
gravitational systems. It is then also known in conformal differential
geometry, where it is the central equation in Nirenberg's problem of prescribed
Gaussian curvature. For constant Gauss curvature it becomes Liouville's
equation, which also appears in two-dimensional so-called quantum Liouville
gravity. The PDE for n=4 is Paneitz' equation, and while it is not known in
statistical mechanics, it originated from a study of the conformal invariance
of Maxwell's electromagnetism and has made its appearance in some recent model
of four-dimensional quantum gravity. In differential geometry, the Paneitz
equation and its higher order n generalizations have applications in the
conformal geometry of n-manifolds, but no physical applications yet for general
n. Interestingly, though, all the Paneitz equations have an interpretation in
terms of statistical mechanics.Comment: 17 pages. To appear in Physica
A super Asian dust storm over the East and South China Seas: disproportionate dust deposition
A super Asian dust (SAD) storm that originated from North China has affected East Asia since 20 March 2010. The tempo-spatial and size distributions of aerosol Al, a tracer of wind-blown dust, were measured on a regional aerosol network in March 2010. Two dust events were recorded: the SAD and a relatively moderate AD event. The SAD clouds raised Al concentrations to ~50 µg/m3 on 21 and 22 March over the East China Sea (ECS) and occupied there for ~5 days. The SAD plume also stretched toward the South China Sea (SCS) on 21 March however, it caused a maximum Al concentration of ~8.5 µg/m3 only, much lower than that observed in the ECS. In comparison, a weaker dust plume on 16 March caused Al maximum of ~4 µg/m3 over the ECS, and comparably, ~3 µg/m3 in the SCS. Dry dust deposition was measured during the peak phase of the SAD at 178 mg/m2/d, which corresponded to dry deposition velocities of 0.2–0.6 cm/s only, much lower than the commonly adopted one (1–2 cm/s). The corresponding increase in dust deposition by the SAD was up to a factor of ~12, which was, however, considerably disproportionate to the increase in dust concentration (i.e., the factor of over 100). In certain cases, synoptic atmospheric conditions appear to be more important in regulating dust contribution to the SCS than the strength of AD storms
An evaluation of membrane properties and process characteristics of a scaled-up pressure retarded osmosis (PRO) process
YesThis work presents a systematic evaluation of the membrane and process characteristics of a scaled-up pressure retarded osmosis (PRO). In order to meet pre-defined membrane economic viability ( ≥ 5 W/m2), different operating conditions and design parameters are studied with respect to the increase of the process scale, including the initial flow rates of the draw and feed solution, operating pressure, membrane permeability-selectivity, structural parameter, and the efficiency of the high-pressure pump (HP), energy recovery device (ERD) and hydro-turbine (HT). The numerical results indicate that the performance of the scaled-up PRO process is significantly dependent on the dimensionless flow rate. Furthermore, with the increase of the specific membrane scale, the accumulated solute leakage becomes important. The membrane to achieve the optimal performance moves to the low permeability in order to mitigate the reverse solute permeation. Additionally, the counter-current flow scheme is capable to increase the process performance with a higher permeable and less selectable membrane compared to the co-current flow scheme. Finally, the inefficiencies of the process components move the optimal APD occurring at a higher dimensionless flow rate to reduce the energy losses in the pressurization and at a higher specific membrane scale to increase energy generation
Cardiotoxin III Inhibits Proliferation and Migration of Oral Cancer Cells through MAPK and MMP Signaling
Cardiotoxin III (CTXIII), isolated from the snake venom of Formosan cobra Naja naja atra, has previously been found to induce apoptosis in many types of cancer. Early metastasis is typical for the progression of oral cancer. To modulate the cell migration behavior of oral cancer is one of the oral cancer therapies. In this study, the possible modulating effect of CTXIII on oral cancer migration is addressed. In the example of oral squamous carcinoma Ca9-22 cells, the cell viability was decreased by CTXIII treatment in a dose-responsive manner. In wound-healing assay, the cell migration of Ca9-22 cells was attenuated by CTXIII in a dose- and time-responsive manner. After CTXIII treatment, the MMP-2 and MMP-9 protein expressions were downregulated, and the phosphorylation of JNK and p38-MAPK was increased independent of ERK phosphorylation. In conclusion, CTXIII has antiproliferative and -migrating effects on oral cancer cells involving the p38-MAPK and MMP-2/-9 pathways
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s) = 1.96 TeV
We present a measurement of the top quark pair production cross section in
ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with
the Collider Detector at Fermilab. We select ttbar decays into the final states
e nu + jets and mu nu + jets, in which at least one b quark from the t-quark
decays is identified using a secondary vertex-finding algorithm. Assuming a top
quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat)
+1.1-0.9 (syst) pb. We also report the first observation of ttbar with
significance greater than 5 sigma in the subsample in which both b quarks are
identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3
(syst) pb.Comment: Accepted for publication in Physics Review Letters, 7 page
- …
