610 research outputs found

    Neutral particle Mass Spectrometry with Nanomechanical Systems

    Get PDF
    Current approaches to Mass Spectrometry (MS) require ionization of the analytes of interest. For high-mass species, the resulting charge state distribution can be complex and difficult to interpret correctly. In this article, using a setup comprising both conventional time-of-flight MS (TOF-MS) and Nano-Electro-Mechanical-Systems-based MS (NEMS-MS) in situ, we show directly that NEMS-MS analysis is insensitive to charge state: the spectrum consists of a single peak whatever the species charge state, making it significantly clearer than existing MS analysis. In subsequent tests, all charged particles are electrostatically removed from the beam, and unlike TOF-MS, NEMS-MS can still measure masses. This demonstrates the possibility to measure mass spectra for neutral particles. Thus, it is possible to envisage MS-based studies of analytes that are incompatible with current ionization techniques and the way is now open for the development of cutting edge system architectures with unique analytical capability

    Towards single-molecule nanomechanical mass spectrometry

    Get PDF
    Mass spectrometry provides rapid and quantitative identification of protein species with relatively low sample consumption. The trend towards biological analysis at increasingly smaller scales, ultimately down to the volume of an individual cell, continues, and mass spectrometry with a sensitivity of a few to single molecules will be necessary. Nanoelectromechanical systems provide unparalleled mass sensitivity, which is now sufficient for the detection of individual molecular species in real time. Here, we report the first demonstration of mass spectrometry based on single biological molecule detection with a nanoelectromechanical system. In our nanoelectromechanical–mass spectrometry system, nanoparticles and protein species are introduced by electrospray injection from the fluid phase in ambient conditions into vacuum, and are subsequently delivered to the nanoelectromechanical system detector by hexapole ion optics. Precipitous frequency shifts, proportional to the mass, are recorded in real time as analytes adsorb, one by one, onto a phase-locked, ultrahigh-frequency nanoelectromechanical resonator. These first nanoelectromechanical system–mass spectrometry spectra, obtained with modest mass sensitivity from only several hundred mass adsorption events, presage the future capabilities of this approach. We also outline the substantial improvements that are feasible in the near term, some of which are unique to nanoelectromechanical system based-mass spectrometry

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe

    Curvature Inspired Cosmological Scenario

    Full text link
    Using modified gravity with non-linear terms of curvature, R2R^2 and R(r+2)R^{(r +2)} (with rr being the positive real number and RR being the scalar curvature), cosmological scenario,beginning at the Planck scale, is obtained. Here, a unified picture of cosmology is obtained from f(R)f(R)- gravity. In this scenario, universe begins with power-law inflation, followed by deceleration and acceleration in the late universe as well as possible collapse of the universe in future. It is different from f(R)f(R)- dark energy models with non-linear curvature terms assumed as dark energy. Here, dark energy terms are induced by linear as well as non-linear terms of curvature in Friedmann equation being derived from modified gravity.It is also interesting to see that, in this model, dark radiation and dark matter terms emerge spontaneously from the gravitational sector. It is found that dark energy, obtained here, behaves as quintessence in the early universe and phantom in the late universe. Moreover, analogous to brane-tension in brane-gravity inspired Friedmann equation, a tension term λ\lambda arises here being called as cosmic tension. It is found that, in the late universe, Friedmann equation (obtained here) contains a term ρ2/2λ- \rho^2/2\lambda (ρ\rho being the phantom energy density) analogous to a similar term in Friedmann equation with loop quantum effects, if λ>0\lambda > 0 and brane-gravity correction when λ<0.\lambda < 0.Comment: 19 Pages. To appear in Int. J. Thro. Phy

    Inertial Imaging with Nanomechanical Systems

    Get PDF
    Mass sensing with nanoelectromechanical systems has advanced significantly during the last decade. With nanoelectromechanical systems sensors it is now possible to carry out ultrasensitive detection of gaseous analytes, to achieve atomic-scale mass resolution and to perform mass spectrometry on single proteins. Here, we demonstrate that the spatial distribution of mass within an individual analyte can be imaged—in real time and at the molecular scale—when it adsorbs onto a nanomechanical resonator. Each single-molecule adsorption event induces discrete, time-correlated perturbations to all modal frequencies of the device. We show that by continuously monitoring a multiplicity of vibrational modes, the spatial moments of mass distribution can be deduced for individual analytes, one-by-one, as they adsorb. We validate this method for inertial imaging, using both experimental measurements of multimode frequency shifts and numerical simulations, to analyse the inertial mass, position of adsorption and the size and shape of individual analytes. Unlike conventional imaging, the minimum analyte size detectable through nanomechanical inertial imaging is not limited by wavelength-dependent diffraction phenomena. Instead, frequency fluctuation processes determine the ultimate attainable resolution. Advanced nanoelectromechanical devices appear capable of resolving molecular-scale analytes

    Towards Single-Molecule Nanomechanical Mass Spectrometry

    Get PDF
    We present an initial attempt to perform mass spectrometry (MS) of single proteins and gold nanoparticles with nanoelectromechanical systems (NEMS). Mass spectrometry, the identification of molecules based on their masses, is one of the most important techniques in proteomics research currently. NEMS devices, with their exquisite sensitivities, low costs, and abilities to detect neutral molecules, offers a promising paradigm for performing mass spectrometry. In our first-generation experiments, protein molecules, and gold nanoparticles were ionized by electrospray ionization (ESI) and transported to a NEMS chip, through a differential vacuum system, by hexapolar ion guides. NEMS was transduced by magnetomotive technique and the fundamental mode of the flexural resonance was monitored. Species landing on the NEMS are weighted through the change in the frequency of the resonator. Two protein species (66 kDa and 200 kDa) and 5 nm gold nanoparticles were analyzed with this technique, with mass resolution level of 15 kDa. A method to remove the position dependency of the frequency shift was developed employing two different modes of a nanomechanical beam. The uncertainties of mass and position values are calculated as a function of the frequency noise of the first and second modes of the beam. In our second-generation experiments, the first and second flexural modes of a doubly-clamped beam were tracked in real time. Nanoparticles and biospecies are again produced through ESI and transported through ion optics. The adsorption of 10 nm GNPs and IgM protein (950 kDa) were observed. Mass values for these events are obtained with the multimode analysis technique and shown to be consistent with the expected values.</p

    Quantum nondemolition measurement of mechanical motion quanta

    Get PDF
    The fields of opto- and electromechanics have facilitated numerous advances in the areas of precision measurement and sensing, ultimately driving the studies of mechanical systems into the quantum regime. To date, however, the quantization of the mechanical motion and the associated quantum jumps between phonon states remains elusive. For optomechanical systems, the coupling to the environment was shown to preclude the detection of the mechanical mode occupation, unless strong single photon optomechanical coupling is achieved. Here, we propose and analyse an electromechanical setup, which allows to overcome this limitation and resolve the energy levels of a mechanical oscillator. We find that the heating of the membrane, caused by the interaction with the environment and unwanted couplings, can be suppressed for carefully designed electromechanical systems. The results suggest that phonon number measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
    corecore