339 research outputs found
Mechanics and dynamics of X-chromosome pairing at X inactivation
At the onset of X-chromosome inactivation, the vital process whereby female mammalian cells equalize X products with
respect to males, the X chromosomes are colocalized along their Xic (X-inactivation center) regions. The mechanism
inducing recognition and pairing of the X’s remains, though, elusive. Starting from recent discoveries on the molecular
factors and on the DNA sequences (the so-called "pairing sites") involved, we dissect the mechanical basis of Xic
colocalization by using a statistical physics model. We show that soluble DNA-specific binding molecules, such as those
experimentally identified, can be indeed sufficient to induce the spontaneous colocalization of the homologous
chromosomes but only when their concentration, or chemical affinity, rises above a threshold value as a consequence of a
thermodynamic phase transition. We derive the likelihood of pairing and its probability distribution. Chromosome dynamics
has two stages: an initial independent Brownian diffusion followed, after a characteristic time scale, by recognition and
pairing. Finally, we investigate the effects of DNA deletion/insertions in the region of pairing sites and compare model
predictions to available experimental data
The Ser82 RAGE variant affects lung function and serum RAGE in smokers and sRAGE production in vitro
Introduction:
Genome-Wide Association Studies have identified associations between lung function measures and Chronic Obstructive Pulmonary Disease (COPD) and chromosome region 6p21 containing the gene for the Advanced Glycation End Product Receptor (AGER, encoding RAGE). We aimed to (i) characterise RAGE expression in the lung, (ii) identify AGER transcripts, (iii) ascertain if SNP rs2070600 (Gly82Ser C/T) is associated with lung function and serum sRAGE levels and (iv) identify whether the Gly82Ser variant is functionally important in altering sRAGE levels in an airway epithelial cell model.
Methods:
Immunohistochemistry was used to identify RAGE protein expression in 26 human tissues and qPCR was used to quantify AGER mRNA in lung cells. Gene expression array data was used to identify AGER expression during lung development in 38 fetal lung samples. RNA-Seq was used to identify AGER transcripts in lung cells. sRAGE levels were assessed in cells and patient serum by ELISA. BEAS2B-R1 cells were transfected to overexpress RAGE protein with either the Gly82 or Ser82 variant and sRAGE levels identified.
Results:
Immunohistochemical assessment of 6 adult lung samples identified high RAGE expression in the alveoli of healthy adults and individuals with COPD. AGER/RAGE expression increased across developmental stages in human fetal lung at both the mRNA (38 samples) and protein levels (20 samples). Extensive AGER splicing was identified. The rs2070600T (Ser82) allele is associated with higher FEV1, FEV1/FVC and lower serum sRAGE levels in UK smokers. Using an airway epithelium model overexpressing the Gly82 or Ser82 variants we found that HMGB1 activation of the RAGE-Ser82 receptor results in lower sRAGE production.
Conclusions:
This study provides new information regarding the expression profile and potential role of RAGE in the human lung and shows a functional role of the Gly82Ser variant. These findings advance our understanding of the potential mechanisms underlying COPD particularly for carriers of this AGER polymorphism
Women's Preferences for Treatment of Perinatal Depression and Anxiety : A Discrete Choice Experiment
Perinatal depression and anxiety (PNDA) are an international healthcare priority, associated with significant short- and long-term problems for women, their children and families. Effective treatment is available but uptake is suboptimal: some women go untreated whilst others choose treatments without strong evidence of efficacy. Better understanding of women's preferences for treatment is needed to facilitate uptake of effective treatment. To address this issue, a discrete choice experiment (DCE) was administered to 217 pregnant or postnatal women in Australia, who were recruited through an online research company and had similar sociodemographic characteristics to Australian data for perinatal women. The DCE investigated preferences regarding cost, treatment type, availability of childcare, modality and efficacy. Data were analysed using logit-based models accounting for preference and scale heterogeneity. Predicted probability analysis was used to explore relative attribute importance and policy change scenarios, including how these differed by women's sociodemographic characteristics. Cost and treatment type had the greatest impact on choice, such that a policy of subsidising effective treatments was predicted to double their uptake compared with the base case. There were differences in predicted uptake associated with certain sociodemographic characteristics: for example, women with higher educational attainment were more likely to choose effective treatment. The findings suggest policy directions for decision makers whose goal is to reduce the burden of PNDA on women, their children and families
Intraflagellar transport dynein is autoinhibited by trapping of its mechanical and track-binding elements
Cilia are multi-functional organelles that are constructed using intraflagellar transport (IFT) of cargo to and from their tip. It is widely held that the retrograde IFT motor, dynein-2, must be controlled in order to reach the ciliary tip and then unleashed to power the return journey. However, the mechanism is unknown. Here, we systematically define the mechanochemistry of human dynein-2 motors as monomers, dimers, and multi-motor assemblies with kinesin-II. Combining these data with insights from single-particle electron microscopy, we discover that dynein-2 dimers are intrinsically autoinhibited. Inhibition is mediated by trapping dynein-2’s mechanical “linker” and “stalk” domains within a novel motor-motor interface. We find that linker-mediated inhibition enables efficient transport of dynein-2 by kinesin-II in vitro. These results suggest a conserved mechanism for autoregulation among dimeric dyneins, which is exploited as a switch for dynein-2’s recycling activity during IFT
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Oyster reef restoration fails to recoup global historic ecosystem losses despite substantial biodiversity gain
This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordHuman activities have led to degradation of ecosystems globally. The lost ecosystem functions and services accumulate from the time of disturbance to the full recovery of the ecosystem and can be quantified as a "recovery debt," providing a valuable tool to develop better restoration practices that accelerate recovery and limit losses. Here, we quantified the recovery of faunal biodiversity and abundance toward a predisturbed state following structural restoration of oyster habitats globally. We found that while restoration initiates a rapid increase in biodiversity and abundance of reef-associated species within 2 years, recovery rate then decreases substantially, leaving a global shortfall in recovery of 35% below a predisturbed state. While efficient restoration methods boost recovery and minimize recovery shortfalls, the time to full recovery is yet to be quantified. Therefore, potential future coastal development should weigh up not only the instantaneous damage to ecosystem functions but also the potential for generational loss of services.Hong Kong Post-Doctoral FellowshipEnvironment and Conservation Fund Hong KongFaculty of Science (HKU) Rising Star Fun
Mechanisms of T cell organotropism
F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation
Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms
Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, bacterial polysaccharides and proteins, which are up to 1000-fold more antibiotic resistant than planktonic cultures. To date, extracellular DNA has been shown to function as a structural support to maintain Pseudomonas aeruginosa biofilm architecture. Here we show that DNA is a multifaceted component of P. aeruginosa biofilms. At physiologically relevant concentrations, extracellular DNA has antimicrobial activity, causing cell lysis by chelating cations that stabilize lipopolysaccharide (LPS) and the outer membrane (OM). DNA-mediated killing occurred within minutes, as a result of perturbation of both the outer and inner membrane (IM) and the release of cytoplasmic contents, including genomic DNA. Sub-inhibitory concentrations of DNA created a cation-limited environment that resulted in induction of the PhoPQ- and PmrAB-regulated cationic antimicrobial peptide resistance operon PA3552–PA3559 in P. aeruginosa. Furthermore, DNA-induced expression of this operon resulted in up to 2560-fold increased resistance to cationic antimicrobial peptides and 640-fold increased resistance to aminoglycosides, but had no effect on β-lactam and fluoroquinolone resistance. Thus, the presence of extracellular DNA in the biofilm matrix contributes to cation gradients, genomic DNA release and inducible antibiotic resistance. DNA-rich environments, including biofilms and other infection sites like the CF lung, are likely the in vivo environments where extracellular pathogens such as P. aeruginosa encounter cation limitation
Genetic Diversity among Enterococcus faecalis
Enterococcus faecalis, a ubiquitous member of mammalian gastrointestinal flora, is a leading cause of nosocomial infections and a growing public health concern. The enterococci responsible for these infections are often resistant to multiple antibiotics and have become notorious for their ability to acquire and disseminate antibiotic resistances. In the current study, we examined genetic relationships among 106 strains of E. faecalis isolated over the past 100 years, including strains identified for their diversity and used historically for serotyping, strains that have been adapted for laboratory use, and isolates from previously described E. faecalis infection outbreaks. This collection also includes isolates first characterized as having novel plasmids, virulence traits, antibiotic resistances, and pathogenicity island (PAI) components. We evaluated variation in factors contributing to pathogenicity, including toxin production, antibiotic resistance, polymorphism in the capsule (cps) operon, pathogenicity island (PAI) gene content, and other accessory factors. This information was correlated with multi-locus sequence typing (MLST) data, which was used to define genetic lineages. Our findings show that virulence and antibiotic resistance traits can be found within many diverse lineages of E. faecalis. However, lineages have emerged that have caused infection outbreaks globally, in which several new antibiotic resistances have entered the species, and in which virulence traits have converged. Comparing genomic hybridization profiles, using a microarray, of strains identified by MLST as spanning the diversity of the species, allowed us to identify the core E. faecalis genome as consisting of an estimated 2057 unique genes
The Transcriptome of the Nosocomial Pathogen Enterococcus faecalis V583 Reveals Adaptive Responses to Growth in Blood
gains access to the bloodstream and establishes a persistent infection is not well understood.. infections
- …
