35 research outputs found
Recommended from our members
Harmaline Tremor: Underlying Mechanisms in a Potential Animal Model of Essential Tremor
Background: Harmaline and harmine are tremorigenic β-carbolines that, on administration to experimental animals, induce an acute postural and kinetic tremor of axial and truncal musculature. This drug-induced action tremor has been proposed as a model of essential tremor. Here we review what is known about harmaline tremor. Methods: Using the terms harmaline and harmine on PubMed, we searched for papers describing the effects of these β-carbolines on mammalian tissue, animals, or humans. Results: Investigations over four decades have shown that harmaline induces rhythmic burst-firing activity in the medial and dorsal accessory inferior olivary nuclei that is transmitted via climbing fibers to Purkinje cells and to the deep cerebellar nuclei, then to brainstem and spinal cord motoneurons. The critical structures required for tremor expression are the inferior olive, climbing fibers, and the deep cerebellar nuclei; Purkinje cells are not required. Enhanced synaptic norepinephrine or blockade of ionic glutamate receptors suppresses tremor, whereas enhanced synaptic serotonin exacerbates tremor. Benzodiazepines and muscimol suppress tremor. Alcohol suppresses harmaline tremor but exacerbates harmaline-associated neural damage. Recent investigations on the mechanism of harmaline tremor have focused on the T-type calcium channel. Discussion: Like essential tremor, harmaline tremor involves the cerebellum, and classic medications for essential tremor have been found to suppress harmaline tremor, leading to utilization of the harmaline model for preclinical testing of antitremor drugs. Limitations are that the model is acute, unlike essential tremor, and only approximately half of the drugs reported to suppress harmaline tremor are subsequently found to suppress tremor in clinical trials
Recommended from our members
Conditions Associated with Essential Tremor in Veterans: A Potential Role for Chronic Stress
Background: Increased depression, hearing loss, dementia, alcoholism, and mortality in essential tremor patients remain unexplained. We investigated whether conditions associated with tremor are linked to chronic stress.
Methods: The FY2013 Veterans Affairs database was queried for 38 selected dual diagnosis combinations in 5,854,223 veterans aged 21–95 years.
Results: Post-traumatic stress disorder, anxiety, and depression were the most common psychiatric diagnoses in tremor patients, with the odds ratio exceeding 2 in all 15-year cohorts. Depending on age, patients with essential tremor were more likely than those without to have obsessive–compulsive disorder, bipolar illness, schizophrenia, use tobacco and abuse alcohol, have hypertension, obesity, hyperlipidemia, diabetes, vitamin D deficiency, coronary and cerebrovascular diseases, congestive heart failure, stroke, asthma, hypothyroidism, irritable bowel syndrome, renal insufficiency, alcoholic liver disease, hearing loss, glaucoma, macular degeneration, migraine, epilepsy, idiopathic polyneuropathy, history of head trauma, and ‘Alzheimer’s dementia. In contrast, lung and colorectal cancer, amyotrophic lateral sclerosis, psychostimulant abuse, and rheumatoid arthritis were not more common.
Discussion: Post-traumatic stress disorder, anxiety, and depression, strongly associated with essential tremor, are known risk factors for poor health habits, tobacco use and alcohol abuse; collectively these are risk factors for vascular disease, with further negative health consequences for multiple organ systems. As essential tremor is associated with all these conditions, we propose that chronic stress is not only responsible for the conditions associated with tremor but in some cases itself directly and indirectly induces essential tremor, so that tremor and poor health share a common cause
Recommended from our members
Suppression of Harmaline Tremor by Activation of an Extrasynaptic GABAA Receptor: Implications for Essential Tremor
Background: Metabolic imaging has revealed excessive cerebellar activity in essential tremor patients. Golgi cells control cerebellar activity by releasing gamma-aminobutyric acid (GABA) onto synaptic and extrasynaptic receptors on cerebellar granule cells. We postulated that the extrasynaptic GABAA receptor-specific agonist THIP (gaboxadol; 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) would suppress tremor in the harmaline model of essential tremor and, since cerebellar extrasynaptic receptors contain α6 and δsubunits, would fail to do so in mice lacking either subunit.
Methods: Digitally measured motion power, expressed as 10–16 Hz power (the tremor bandwidth) divided by background 8–32 Hz motion power, was accessed during pre-harmaline baseline, pre-THIP harmaline exposure, and after THIP administration (0, 2, or 3 mg/kg). These low doses were chosen as they did not impair performance on the straight wire test, a sensitive test for psychomotor impairment. Littermate δ wild-type and knockout (Gabrd+/+, Gabrd–/–) and littermate α6 wild-type and knockout (Gabra6+/+, Gabra6–/–) mice were tested.
Results: Gabrd+/+ mice displayed tremor reduction at 3 mg/kg THIP but not 2 mg/kg, and Gabra6+/+ mice showed tremor reduction at 2 and 3 mg/kg. Their respective subunit knockout littermates displayed no tremor reduction compared with vehicle controls at either dose.
Discussion: The loss of anti-tremor efficacy with deletion of either δ or α6 GABAA receptor subunits indicates that extrasynaptic receptors containing both subunits, most likely located on cerebellar granule cells where they are highly expressed, mediate tremor suppression by THIP. A medication designed to activate only these receptors may display a favorable profile for treating essential tremor
A Comparison of Four Treatments for Generalized Convulsive Status Epilepticus
ABSTRACT
Background and Methods Although generalized convulsive status epilepticus is a life-threatening emergency, the best initial drug treatment is uncertain. We conducted a five-year randomized, doubleblind, multicenter trial of four intravenous regimens: diazepam (0.15 mg per kilogram of body weight) followed by phenytoin (18 mg per kilogram), lorazepam (0.1 mg per kilogram), phenobarbital (15 mg per kilogram), and phenytoin (18 mg per kilogram). Patients were classified as having either overt generalized status epilepticus (defined as easily visible generalized convulsions) or subtle status epilepticus (indicated by coma and ictal discharges on the electroencephalogram, with or without subtle convulsive movements such as rhythmic muscle twitches or tonic eye deviation). Treatment was considered successful when all motor and electroencephalographic seizure activity ceased within 20 minutes after the beginning of the drug infusion and there was no return of seizure activity during the next 40 minutes. Analyses were performed with data on only the 518 patients with verified generalized convulsive status epilepticus as well as with data on all 570 patients who were enrolled.
Results Three hundred eighty-four patients had a verified diagnosis of overt generalized convulsive status epilepticus. In this group, lorazepam was successful in 64.9 percent of those assigned to receive it, phenobarbital in 58.2 percent, diazepam and phenytoin in 55.8 percent, and phenytoin in 43.6 percent (P=0.02 for the overall comparison among the four groups). Lorazepam was significantly superior to phenytoin in a pairwise comparison (P=0.002). Among the 134 patients with a verified diagnosis of subtle generalized convulsive status epilepticus, no significant differences among the treatments were detected (range of success rates, 7.7 to 24.2 percent). In an intention-to-treat analysis, the differences among treatment groups were not significant, either among the patients with overt status epilepticus (P=0.12) or among those with subtle status epilepticus (P=0.91). There were no differences among the treatments with respect to recurrence during the 12- hour study period, the incidence of adverse reactions, or the outcome at 30 days.
Conclusions As initial intravenous treatment for overt generalized convulsive status epilepticus, lorazepam is more effective than phenytoin. Although lorazepam is no more efficacious than phenobarbital or diazepam and phenytoin, it is easier to use. (N Engl J Med 1998;339:792-8.
Local control of dopamine synthesis in the brain
Administration of γ-hydroxybutyrate (GOBA) has been shown to block firing of dopaminergic cells in brain, with a concomitant increase in dopamine (DA). The increase of DA after GOBA was employed as an index of tyrosine hydroxylase activity in vivo. The reputed DA agonist anomorphine inhibited the rise of DA after GOBA, an inhibition which was antagonized by haloperidol. The action of anomorphine was found not to be due to inhibition of monoamine oxidase or of catechol-O-methyltransferase, but was similar to that of amphetamine. The DA agonists piribedil, apocodeine, M7, ergocornine and 2-Br-α-ergocryptine inhibited the rise of DA after GOBA. The last four, however, were not antagonized in their inhibition by haloperidol. Ergocornine, M7 and piribedil also differed from apomorphine in that the elevated DA levels in controls. These results provide strong evidence for the presence of a dopamine receptor which acts locally to inhibit dopamine synthesis. In addition, the results suggest that DA agonists do not have a common mode of action
