5,056 research outputs found
Projective Equivalence for the Roots of Unity
Let be the collection of roots of unity and
. Two elements
and of are said to be projectively
equivalent if there exists such that
for any . In this article, we will give a
complete classification for the projectively equivalent pairs. As a
consequence, we will show that the maximal length for the nontrivial
projectively equivalent pairs is
Torsion of elliptic curves and unlikely intersections
We study effective versions of unlikely intersections of images of torsion
points of elliptic curves on the projective line.Comment: 19 page
Security proof of differential phase shift quantum key distribution in the noiseless case
Differential phase shift quantum key distribution systems have a high
potential for achieving high speed key generation. However, its unconditional
security proof is still missing, even though it has been proposed for many
years. Here, we prove its security against collective attacks with a weak
coherent light source in the noiseless case (i.e. no bit error). The only
assumptions are that quantum theory is correct, the devices are perfect and
trusted and the key size is infinite. Our proof works on threshold detectors.
We compute the lower bound of the secret key generation rate using the
information-theoretical security proof method. Our final result shows that the
lower bound of the secret key generation rate per pulse is linearly
proportional to the channel transmission probability if Bob's detection counts
obey the binomial distribution.Comment: Published version, 13 pages, 4 figures, minor changes, references
added, acknowledgement adde
Collective quantum phase slips in multiple nanowire junctions
Realization of robust coherent quantum phase slips represents a significant
experimental challenge. Here we propose a new design consisting of multiple
nanowire junctions to realize a phase-slip flux qubit. It admits good
tunability provided by gate voltages applied on superconducting islands
separating nanowire junctions. In addition, the gates and junctions can be
identical or distinct to each other leading to symmetric and asymmetric setups.
We find that the asymmetry can improve the performance of the proposed device,
compared with the symmetric case. In particular, it can enhance the effective
rate of collective quantum phase slips. Furthermore, we demonstrate how to
couple two such devices via a mutual inductance. This is potentially useful for
quantum gate operations. Our investigation on how symmetry in multiple nanowire
junctions affects the device performance should be useful for the application
of phase-slip flux qubits in quantum information processing and quantum
metrology.Comment: 12 pages, 6 figure
- …
