24 research outputs found

    The Early Data Release of the Dark Energy Spectroscopic Instrument

    Get PDF
    \ua9 2024. The Author(s). Published by the American Astronomical Society. The Dark Energy Spectroscopic Instrument (DESI) completed its 5 month Survey Validation in 2021 May. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Validating the Galaxy and Quasar Catalog-Level Blinding Scheme for the DESI 2024 analysis

    Get PDF
    International audienceIn the era of precision cosmology, ensuring the integrity of data analysis through blinding techniques is paramount -- a challenge particularly relevant for the Dark Energy Spectroscopic Instrument (DESI). DESI represents a monumental effort to map the cosmic web, with the goal to measure the redshifts of tens of millions of galaxies and quasars. Given the data volume and the impact of the findings, the potential for confirmation bias poses a significant challenge. To address this, we implement and validate a comprehensive blind analysis strategy for DESI Data Release 1 (DR1), tailored to the specific observables DESI is most sensitive to: Baryonic Acoustic Oscillations (BAO), Redshift-Space Distortion (RSD) and primordial non-Gaussianities (PNG). We carry out the blinding at the catalog level, implementing shifts in the redshifts of the observed galaxies to blind for BAO and RSD signals and weights to blind for PNG through a scale-dependent bias. We validate the blinding technique on mocks, as well as on data by applying a second blinding layer to perform a battery of sanity checks. We find that the blinding strategy alters the data vector in a controlled way such that the BAO and RSD analysis choices do not need any modification before and after unblinding. The successful validation of the blinding strategy paves the way for the unblinded DESI DR1 analysis, alongside future blind analyses with DESI and other surveys
    corecore