363 research outputs found
PID-Comm: A Fast and Flexible Collective Communication Framework for Commodity Processing-in-DIMM Devices
Recent dual in-line memory modules (DIMMs) are starting to support
processing-in-memory (PIM) by associating their memory banks with processing
elements (PEs), allowing applications to overcome the data movement bottleneck
by offloading memory-intensive operations to the PEs. Many highly parallel
applications have been shown to benefit from these PIM-enabled DIMMs, but
further speedup is often limited by the huge overhead of inter-PE
communication. This mainly comes from the slow CPU-mediated inter-PE
communication methods which incurs significant performance overheads, making it
difficult for PIM-enabled DIMMs to accelerate a wider range of applications.
Prior studies have tried to alleviate the communication bottleneck, but they
lack enough flexibility and performance to be used for a wide range of
applications. In this paper, we present PID-Comm, a fast and flexible
collective inter-PE communication framework for commodity PIM-enabled DIMMs.
The key idea of PID-Comm is to abstract the PEs as a multi-dimensional
hypercube and allow multiple instances of collective inter-PE communication
between the PEs belonging to certain dimensions of the hypercube. Leveraging
this abstraction, PID-Comm first defines eight collective inter-PE
communication patterns that allow applications to easily express their complex
communication patterns. Then, PID-Comm provides high-performance
implementations of the collective inter-PE communication patterns optimized for
the DIMMs. Our evaluation using 16 UPMEM DIMMs and representative parallel
algorithms shows that PID-Comm greatly improves the performance by up to 4.20x
compared to the existing inter-PE communication implementations. The
implementation of PID-Comm is available at https://github.com/AIS-SNU/PID-Comm.Comment: Accepted to ISCA 202
Assessment of Nondestructive Testing Technologies for Quality Control/Quality Assurance of Asphalt Mixtures
Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed
Weak Hadley cell intensity changes due to compensating effects of tropical and extratropical radiative forcing
The Hadley cell response to globally increasing CO2 concentrations is spatially complex, with an intensified rising branch and weakened descending branch. To better understand these changes, we examine the sensitivity of the Hadley cell to idealized radiative forcing in different latitude bands. The Hadley cell response is, to first order, governed by the latitudinal structure of the forcing. The strengthening of the upward branch is attributed to tropical forcing, whereas the weakening of the descending branch is attributed to extratropical forcing. These direct radiatively-forced Hadley cell responses are amplified by changes in atmospheric eddy heat transport while being partially offset by changes in gross moist stability and ocean heat uptake. The radiative feedbacks further modulate the Hadley cell response by altering the meridional atmospheric energy gradient. The Hadley cell projections under global warming are thus a result of opposing - and thus compensating - effects from tropical and extratropical radiative forcings
Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells
Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induce β-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3β inhibitor) or negatively (IWR-1-endo, Axin stabilizer) control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested that β-catenin/TCF1 complex directly regulated the expression of Sox1 during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation
Does an Eye Tracker Tell the Truth About Visualizations?: Findings While Investigating Visualizations for Decision Making
For information visualization researchers, eye tracking has been a useful tool to investigate research participants’ underlying cognitive processes by tracking their eye movements while they interact with visual techniques. We used an eye tracker to better understand why participants with a variant of a tabular visualization called ‘SimulSort’ outperformed ones with a conventional table and typical one-column sorting feature (i.e., Typical Sorting). The collected eye-tracking data certainly shed light on the detailed cognitive processes of the participants; SimulSort helped with decision-making tasks by promoting efficient browsing behavior and compensatory decision-making strategies. However, more interestingly, we also found unexpected eye-tracking patterns with Simul- Sort. We investigated the cause of the unexpected patterns through a crowdsourcing-based study (i.e., Experiment 2), which elicited an important limitation of the eye tracking method: incapability of capturing peripheral vision. This particular result would be a caveat for other visualization researchers who plan to use an eye tracker in their studies. In addition, the method to use a testing stimulus (i.e., influential column) in Experiment 2 to verify the existence of such limitations would be useful for researchers who would like to verify their eye tracking results
Acute Liver Failure Secondary to Hepatic Infiltration of Malignant Melanoma
Acute liver failure due to malignant melanoma is uncommon. We presents a case of acute liver failure secondary to hepatic infiltration of a malignant melanoma. An 86-year-old man was admitted with elevated liver enzymes and an increased lactate dehydrogenase level. His condition progressed to acute liver failure, but the etiology of liver failure was unclear. Esophagogastroduodenoscopy was performed to evaluate dyspepsia, which showed signs indicative of malignant melanoma. Based on the endoscopy findings and elevated liver enzyme levels, liver biopsy was performed to confirm the presence of malignant melanoma. Hepatic infiltration of malignant melanoma was observed histologically. However, massive and diffuse liver metastasis is very rare and difficult to identify on imaging studies. If the etiology of liver failure is unclear, diffuse metastatic melanoma infiltration should be considered as differential diagnosis. Early liver biopsy can help to clarify the diagnosis
Does an Eye Tracker Tell the Truth about Visualizations?: Findings while Investigating Visualizations for Decision Making
Walker circulation response to extratropical radiative forcing
Walker circulation variability and associated zonal shifts in the heating of the tropical atmosphere have far-reaching global impacts well into high latitudes. Yet the reversed high latitude-to-Walker circulation teleconnection is not fully understood. Here, we reveal the dynamical pathways of this teleconnection across different components of the climate system using a hierarchy of climate model simulations. In the fully coupled system with ocean circulation adjustments, the Walker circulation strengthens in response to extratropical radiative cooling of either hemisphere, associated with the upwelling of colder subsurface water in the eastern equatorial Pacific. By contrast, in the absence of ocean circulation adjustments, the Walker circulation response is sensitive to the forcing hemisphere, due to the blocking effect of the northward-displaced climatological intertropical convergence zone and shortwave cloud radiative effects. Our study implies that energy biases in the extratropics can cause pronounced changes of tropical climate patterns
Carnitine Metabolite as a Potential Circulating Biomarker for Sarcopenia in Men
Background Sarcopenia, a multifactorial disorder involving metabolic disturbance, suggests potential for metabolite biomarkers. Carnitine (CN), essential for skeletal muscle energy metabolism, may be a candidate biomarker. We investigated whether CN metabolites are biomarkers for sarcopenia. Methods Associations between the CN metabolites identified from an animal model of sarcopenia and muscle cells and sarcopenia status were evaluated in men from an age-matched discovery (72 cases, 72 controls) and a validation (21 cases, 47 controls) cohort. Results An association between CN metabolites and sarcopenia showed in mouse and cell studies. In the discovery cohort, plasma C5-CN levels were lower in sarcopenic men (P=0.005). C5-CN levels in men tended to be associated with handgrip strength (HGS) (P=0.098) and were significantly associated with skeletal muscle mass (P=0.003). Each standard deviation increase in C5-CN levels reduced the odds of low muscle mass (odd ratio, 0.61; 95% confidence interval [CI], 0.42 to 0.89). The area under the receiver operating characteristic curve (AUROC) of CN score using a regression equation of C5-CN levels, for sarcopenia was 0.635 (95% CI, 0.544 to 0.726). In the discovery cohort, addition of CN score to HGS significantly improved AUROC from 0.646 (95% CI, 0.575 to 0.717; HGS only) to 0.727 (95% CI, 0.643 to 0.810; P=0.006; HGS+CN score). The improvement was confirmed in the validation cohort (AUROC=0.563; 95% CI, 0.470 to 0.656 for HGS; and AUROC=0.712; 95% CI, 0.569 to 0.855 for HGS+CN score; P=0.027). Conclusion C5-CN, indicative of low muscle mass, is a potential circulating biomarker for sarcopenia in men. Further studies are required to confirm these results and explore sarcopenia-related metabolomic changes
- …
