8,212 research outputs found

    Understanding Collective Dynamics of Soft Active Colloids by Binary Scattering

    Full text link
    Collective motion in actively propelled particle systems is triggered on the very local scale by nucleation of coherently moving units consisting of just a handful of particles. These units grow and merge over time, ending up in a long-range ordered, coherently-moving state. So far, there exists no bottom-up understanding of how the microscopic dynamics and interactions between the constituents are related to the system's ordering instability. In this paper, we study a class of models for propelled colloids allowing an explicit treatment of the microscopic details of the collision process. Specifically, the model equations are Newtonian equations of motion with separate force terms for particles' driving, dissipation and interaction forces. Focusing on dilute particle systems, we analyze the binary scattering behavior for these models, and determine-based on the microscopic dynamics-the corresponding collision-rule, i.e., the mapping of pre-collisional velocities and impact parameter on post-collisional velocities. By studying binary scattering we also find that the considered models for active colloids share the same principle for parallel alignment: the first incoming particle (with respect to the center of collision) is aligned to the second particle as a result of the encounter. This behavior is distinctively different to alignment in non-driven dissipative gases. Moreover, the obtained collision rule lends itself as a starting point to apply kinetic theory for propelled particle systems in order to determine the phase boundary to a long-range ordered, coherently-moving state. The microscopic origin of the collision rule offers the opportunity to quantitatively scrutinize the predictions of kinetic theory for propelled particle systems through direct comparison with multi-particle simulations.Comment: 19 pages, 12 figure

    The strong Novikov conjecture for low degree cohomology

    Get PDF
    We show that for each discrete group G, the rational assembly map K_*(BG) \otimes Q \to K_*(C*_{max} G) \otimes \Q is injective on classes dual to the subring generated by cohomology classes of degree at most 2 (identifying rational K-homology and homology via the Chern character). Our result implies homotopy invariance of higher signatures associated to these cohomology classes. This consequence was first established by Connes-Gromov-Moscovici and Mathai. Our approach is based on the construction of flat twisting bundles out of sequences of almost flat bundles as first described in our previous work. In contrast to the argument of Mathai, our approach is independent of (and indeed gives a new proof of) the result of Hilsum-Skandalis on the homotopy invariance of the index of the signature operator twisted with bundles of small curvature.Comment: 11 page

    Critical Casimir Forces in Colloidal Suspensions

    Full text link
    Some time ago, Fisher and de Gennes pointed out that long-ranged correlations in a fluid close to its critical point Tc cause distinct forces between immersed colloidal particles which can even lead to flocculation [C. R. Acad. Sc. Paris B 287, 207 (1978)]. Here we calculate such forces between pairs of spherical particles as function of both relevant thermodynamic variables, i.e., the reduced temperature t = (T-Tc)/Tc and the field h conjugate to the order parameter. This provides the basis for specific predictions concerning the phase behavior of a suspension of colloidal particles in a near-critical solvent.Comment: 29 pages, 14 figure

    Polymer depletion effects near mesoscopic particles

    Get PDF
    The behavior of mesoscopic particles dissolved in a dilute solution of long, flexible, and nonadsorbing polymer chains is studied by field-theoretic methods. For spherical and cylindrical particles the solvation free energy for immersing a single particle in the solution is calculated explicitly. Important features are qualitatively different for self-avoiding polymer chains as compared with ideal chains. The results corroborate the validity of the Helfrich-type curvature expansion for general particle shapes and allow for quantitative experimental tests. For the effective interactions between a small sphere and a wall, between a thin rod and a wall, and between two small spheres quantitative results are presented. A systematic approach for studying effective many-body interactions is provided. The common Asakura-Oosawa approximation modelling the polymer coils as hard spheres turns out to fail completely for small particles and still fails by about 10% for large particles.Comment: 68 pages, 6 figure

    Competing many-body instabilities and unconventional superconductivity in graphene

    Full text link
    The band structure of graphene exhibits van Hove singularities (VHS) at doping x=+- 1/8 away from the Dirac point. Near the VHS, interactions effects, enhanced due to the large density of states, can give rise to various many-body phases at experimentally accessible temperatures. We study the competition between different many-body instabilities in graphene using functional renormalization group (FRG). We predict a rich phase diagram, which, depending on long range hopping as well as screening strength and absolute scale of the Coulomb interaction, contains a d+id-wave superconducting (SC) phase, or a spin density wave phase at the VHS. The d+id state is expected to exhibit quantized charge and spin Hall response, as well as Majorana modes bound to vortices. In the vicinity of the VHS, we find singlet d+id-wave as well as triplet f-wave SC phases.Comment: 4.5 pages, 4 figure

    The column density towards LMC X-1

    Full text link
    We measure the neutral absorption towards the black hole X-ray binary system LMC X-1 from six archival soft X-ray spectra obtained with the gratings and/or CCD detectors on Chandra, XMM-Newton, and Swift. Four spectral models for the soft continuum have been investigated. While the powerlaw model may overestimate NH considerably, the others give consistent results. Taking the lower metalicity of the Large Magellanic Cloud into account, we find equivalent hydrogen column densities of N_H = (1.0-1.3)*10^22 cm^-2, with a systematic dependence on the orbital phase. This variation of the neutral absorption can nearly explain the orbital modulation of the soft X-ray flux recently detected with the All Sky Monitor (ASM) on the Rossi X-ray Timing Explorer (RXTE).Comment: 4 pages, accepted for publication as a Letter in Astronomy and Astrophysic
    corecore