7,256 research outputs found
Epistasis not needed to explain low dN/dS
An important question in molecular evolution is whether an amino acid that
occurs at a given position makes an independent contribution to fitness, or
whether its effect depends on the state of other loci in the organism's genome,
a phenomenon known as epistasis. In a recent letter to Nature, Breen et al.
(2012) argued that epistasis must be "pervasive throughout protein evolution"
because the observed ratio between the per-site rates of non-synonymous and
synonymous substitutions (dN/dS) is much lower than would be expected in the
absence of epistasis. However, when calculating the expected dN/dS ratio in the
absence of epistasis, Breen et al. assumed that all amino acids observed in a
protein alignment at any particular position have equal fitness. Here, we relax
this unrealistic assumption and show that any dN/dS value can in principle be
achieved at a site, without epistasis. Furthermore, for all nuclear and
chloroplast genes in the Breen et al. dataset, we show that the observed dN/dS
values and the observed patterns of amino acid diversity at each site are
jointly consistent with a non-epistatic model of protein evolution.Comment: This manuscript is in response to "Epistasis as the primary factor in
molecular evolution" by Breen et al. Nature 490, 535-538 (2012
Opening a new window to other worlds with spectropolarimetry
A high level of diversity has already been observed among the planets of our
own Solar System. As such, one expects extrasolar planets to present a wide
range of distinctive features, therefore the characterisation of Earth- and
super Earth-like planets is becoming of key importance in scientific research.
The SEARCH (Spectropolarimetric Exoplanet AtmospheRe CHaracerisation) mission
proposal of this paper represents one possible approach to realising these
objectives. The mission goals of SEARCH include the detailed characterisation
of a wide variety of exoplanets, ranging from terrestrial planets to gas
giants. More specifically, SEARCH will determine atmospheric properties such as
cloud coverage, surface pressure and atmospheric composition, and may also be
capable of identifying basic surface features. To resolve a planet with a semi
major axis of down to 1.4AU and 30pc distant SEARCH will have a mirror system
consisting of two segments, with elliptical rim, cut out of a parabolic mirror.
This will yield an effective diameter of 9 meters along one axis. A phase mask
coronagraph along with an integral spectrograph will be used to overcome the
contrast ratio of star to planet light. Such a mission would provide invaluable
data on the diversity present in extrasolar planetary systems and much more
could be learned from the similarities and differences compared to our own
Solar System. This would allow our theories of planetary formation, atmospheric
accretion and evolution to be tested, and our understanding of regions such as
the outer limit of the Habitable Zone to be further improved.Comment: 23 pages, accepted for publication in Experimental Astronom
Experimental evidence that livestock grazing intensity affects cyclic vole population regulation processes
Peer reviewedPublisher PD
Light hadron, Charmonium(-like) and Bottomonium(-like) states
Hadron physics represents the study of strongly interacting matter in all its
manifestations and the understanding of its properties and interactions. The
interest on this field has been revitalized by the discovery of new light
hadrons, charmonium- and bottomonium-like states. I review the most recent
experimental results from different experiments.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 21 pages, 18 figures;
add more references; some correctio
A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation
Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally
Combustion in thermonuclear supernova explosions
Type Ia supernovae are associated with thermonuclear explosions of white
dwarf stars. Combustion processes convert material in nuclear reactions and
release the energy required to explode the stars. At the same time, they
produce the radioactive species that power radiation and give rise to the
formation of the observables. Therefore, the physical mechanism of the
combustion processes, as reviewed here, is the key to understand these
astrophysical events. Theory establishes two distinct modes of propagation for
combustion fronts: subsonic deflagrations and supersonic detonations. Both are
assumed to play an important role in thermonuclear supernovae. The physical
nature and theoretical models of deflagrations and detonations are discussed
together with numerical implementations. A particular challenge arises due to
the wide range of spatial scales involved in these phenomena. Neither the
combustion waves nor their interaction with fluid flow and instabilities can be
directly resolved in simulations. Substantial modeling effort is required to
consistently capture such effects and the corresponding techniques are
discussed in detail. They form the basis of modern multidimensional
hydrodynamical simulations of thermonuclear supernova explosions. The problem
of deflagration-to-detonation transitions in thermonuclear supernova explosions
is briefly mentioned.Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A.
Alsabti and P. Murdin, Springer. 24 pages, 4 figure
Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection.
Ebolaviruses pose significant public health problems due to their high lethality, unpredictable emergence, and localization to the poorest areas of the world. In addition to implementation of standard public health control procedures, a number of experimental human vaccines are being explored as a further means for outbreak control. Recombinant cytomegalovirus (CMV)-based vectors are a novel vaccine platform that have been shown to induce substantial levels of durable, but primarily T-cell-biased responses against the encoded heterologous target antigen. Herein, we demonstrate the ability of rhesus CMV (RhCMV) expressing Ebola virus (EBOV) glycoprotein (GP) to provide protective immunity to rhesus macaques against lethal EBOV challenge. Surprisingly, vaccination was associated with high levels of GP-specific antibodies, but with no detectable GP-directed cellular immunity
Nel positively regulates the genesis of retinal ganglion cells by promoting their differentiation and survival during development
Peer reviewedPublisher PD
Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis
International audienceBACKGROUND: Prostaglandins (PGs) play key roles in development and maintenance of homeostasis of the adult body. Despite these important roles, it remains unclear whether the PG pathway is a target for endocrine disruption. However, several known endocrine-disrupting compounds (EDCs) share a high degree of structural similarity with mild analgesics. OBJECTIVES AND METHODS: Using cell-based transfection and transduction experiments, mass spectrometry, and organotypic assays together with molecular modeling, we investigated whether inhibition of the PG pathway by known EDCs could be a novel point of endocrine disruption. RESULTS: We found that many known EDCs inhibit the PG pathway in a mouse Sertoli cell line and in human primary mast cells. The EDCs also reduced PG synthesis in ex vivo rat testis, and this reduction was correlated with a reduced testosterone production. The inhibition of PG synthesis occurred without involvement of canonical PG receptors or the peroxisome proliferator-activated receptors (PPARs), which have previously been described as targets of EDCs. Instead, our results suggest that the compounds may bind directly into the active site of the cyclooxygenase (COX) enzymes, thereby obstructing the conversion of arachidonic acid to PG precursors without interfering with the expression of the COX enzymes. A common feature of the PG inhibitory EDCs is the presence of aromatic groups that may stabilize binding in the hydrophobic active site of the COX enzymes. CONCLUSION: Our findings suggest a hitherto unknown mode of action by EDCs through inhibition of the PG pathway and suggest new avenues to investigate effects of EDCs on reproductive and immunological disorders that have become increasingly common in recent decades
Photo-antagonism of the GABAA receptor
Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation
- …
