5,429 research outputs found

    High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    Get PDF
    A four-step infiltration method has been developed to infiltrate La0.75Sr0.25MnO3+δ (LSM25) nanoparticles into porous structures (YSZ or LSM-YSZ backbones). The pore size distribution in the backbones is obtained either by using PMMA and/or graphites as pore formers or by leaching treatment of samples with Ni remained in the YSZ structure at high temperatures. All impregnated backbones, presented Rs comparable to a standard screen printed cathode, which proves that LSM nanoparticles forms a pathway for electron conduction.</jats:p

    Opacity calculation for target physics using the ABAKO/RAPCAL code

    Get PDF
    Radiative properties of hot dense plasmas remain a subject of current interest since they play an important role in inertial confinement fusion (ICF) research, as well as in studies on stellar physics. In particular, the understanding of ICF plasmas requires emissivities and opacities for both hydro-simulations and diagnostics. Nevertheless, the accurate calculation of these properties is still an open question and continuous efforts are being made to develop new models and numerical codes that can facilitate the evaluation of such properties. In this work the set of atomic models ABAKO/RAPCAL is presented, as well as a series of results for carbon and aluminum to show its capability for modeling the population kinetics of plasmas in both LTE and NLTE regimes. Also, the spectroscopic diagnostics of a laser-produced aluminum plasma using ABAKO/RAPCAL is discussed. Additionally, as an interesting application of these codes, fitting analytical formulas for Rosseland and Planck mean opacities for carbon plasmas are reported. These formulas are useful as input data in hydrodynamic simulation of targets where the computation task is so hard that in line computation with sophisticated opacity codes is prohibitive

    Breakup of loosely bound nuclei as indirect method in nuclear astrophysics: 8B, 9C, 23Al

    Full text link
    We discuss the use of one-nucleon breakup reactions of loosely bound nuclei at intermediate energies as an indirect method in nuclear astrophysics. These are peripheral processes, therefore we can extract asymptotic normalization coefficients (ANC) from which reaction rates of astrophysical interest can be inferred. To show the usefulness of the method, three different cases are discussed. In the first, existing experimental data for the breakup of 8B at energies from 30 to 1000 MeV/u and of 9C at 285 MeV/u on light through heavy targets are analyzed. Glauber model calculations in the eikonal approximation and in the optical limit using different effective interactions give consistent, though slightly different results, showing the limits of the precision of the method. The results lead to the astrophysical factor S_17(0)=18.7+/-1.9 eVb for the key reaction for solar neutrino production 7Be(p,\gamma)8B. It is consistent with the values from other indirect methods and most direct measurements, but one. Breakup reactions can be measured with radioactive beams as weak as a few particles per second, and therefore can be used for cases where no direct measurements or other indirect methods for nuclear astrophysics can be applied. We discuss a proposed use of the breakup of the proton drip line nucleus 23Al to obtain spectroscopic information and the stellar reaction rate for 22Mg(p,\gamma)23Al.Comment: 6 pages, 4 figures. Presented at the conference "Nuclear Physics for Astrophysics 2", Debrecen, Hungary, May 2005. Prepared for the Proceeding

    Coulomb-nuclear interference in the breakup of 11^{11}Be

    Get PDF
    Within a theory of breakup reactions formulated in the framework of the post form distorted wave Born approximation, we calculate contributions of the pure Coulomb and the pure nuclear breakup as well as those of their interference terms to a variety of cross sections in breakup reactions of the one-neutron halo nucleus 11^{11}Be on a number of target nuclei. In contrast to the assumption often made, the Coulomb-nuclear interference terms are found to be non-negligible in case of exclusive cross sections of the fragments emitted in this reaction on medium mass and heavy target nuclei. The consideration of the nuclear breakup leads to a better description of such data.Comment: 9 pages, latex, 2 figures, to be published in Phys. Rev. C (Rapid Communication

    Histological Examination in Obtaining a Diagnosis in Patients with Lymphadenopathy in Lima, Peru.

    Get PDF
    The differential diagnosis for lymphadenopathy is wide and clinical presentations overlap, making obtaining an accurate diagnosis challenging. We sought to characterize the clinical and radiological characteristics, histological findings, and diagnoses for a cohort of patients with lymphadenopathy of unknown etiology. 121 Peruvian adults with lymphadenopathy underwent lymph node biopsy for microbiological and histopathological evaluation. Mean patient age was 41 years (Interquartile Range 26-52), 56% were males, and 39% were HIV positive. Patients reported fever (31%), weight loss (23%), and headache (22%); HIV infection was associated with fever (P < 0.05) and gastrointestinal symptoms (P < 0.05). Abnormalities were reported in 40% of chest X-rays (N = 101). Physicians suspected TB in 92 patients (76%), lymphoma in 19 patients (16%), and other malignancy in seven patients (5.8%). Histological diagnoses (N = 117) included tuberculosis (34%), hyperplasia (27%), lymphoma (13%), and nonlymphoma malignancy (14%). Hyperplasia was more common (P < 0.001) and lymphoma less common (P = 0.005) among HIV-positive than HIV-negative patients. There was a trend toward reduced frequency of caseous necrosis in samples from HIV-positive than HIV-negative TB patients (67 versus 93%, P = 0.055). The spectrum of diagnoses was broad, and clinical and radiological features correlated poorly with diagnosis. On the basis of clinical features, physicians over-diagnosed TB, and under-diagnosed malignancy. Although this may not be inappropriate in resource-limited settings where TB is the most frequent easily treatable cause of lymphadenopathy, diagnostic delays can be detrimental to patients with malignancy. It is important that patients with lymphadenopathy undergo a full diagnostic work-up including sampling for histological evaluation to obtain an accurate diagnosis

    Supernova Type Ia progenitors from merging double white dwarfs: Using a new population synthesis model

    Get PDF
    The study of Type Ia supernovae (SNIa) has lead to greatly improved insights into many fields in astrophysics, however a theoretical explanation of the origin of these events is still lacking. We investigate the potential contribution to the SNIa rate from the population of merging double carbon-oxygen white dwarfs. We aim to develope a model that fits the observed SNIa progenitors as well as the observed close double white dwarf population. We differentiate between two scenarios for the common envelope (CE) evolution; the alpha-formalism based on the energy equation and the gamma-formalism that is based on the angular momentum equation. In one model we apply the alpha-formalism always. In the second model the gamma-formalism is applied, unless the binary contains a compact object or the CE is triggered by a tidal instability for which the alpha-formalism is used. The binary population synthesis code SeBa was used to evolve binary systems from the zero-age main sequence to the formation of double white dwarfs and subsequent mergers. SeBa has been thoroughly updated since the last publication of the content of the code. The limited sample of observed double white dwarfs is better represented by the simulated population using the gamma-formalism than the alpha-formalism. For both CE formalisms, we find that although the morphology of the simulated delay time distribution matches that of the observations within the errors, the normalisation and time-integrated rate per stellar mass are a factor 7-12 lower than observed. Furthermore, the characteristics of the simulated populations of merging double carbon-oxygen white dwarfs are discussed and put in the context of alternative SNIa models for merging double white dwarfs.Comment: 16 pages (including 4 pages appendix), 15 figure

    Challenges and Obstacles for a Bouncing Universe in Brane Models

    Get PDF
    A Brane evolving in the background of a charged AdS black-hole displays in general a bouncing behaviour with a smooth transition from a contracting to an expanding phase. We examine in detail the conditions and consequences of this behaviour in various cases. For a cosmological-constant-dominated Brane, we obtain a singularity-free, inflationary era which is shown to be compatible only with an intermediate-scale fundamental Planck mass. For a radiation-dominated Brane, the bouncing behaviour can occur only for background-charge values exceeding those allowed for non-extremal black holes. For a matter-dominated Brane, the black-hole mass affects the proper volume or the expansion rate of the Brane. We also consider the Brane evolving in an asymmetric background of two distinct charged AdS black hole spacetimes being bounded by the Brane and find that, in the case of an empty critical Brane, bouncing behaviour occurs only if the black-hole mass difference is smaller than a certain value. The effects of a Brane curvature term on the bounce at early and late times are also investigated.Comment: 23 pages, Latex file, comments and references added, version to appear in Phys. Rev.
    corecore