1,704 research outputs found
A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II
During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning
Neural Network Parameterizations of Electromagnetic Nucleon Form Factors
The electromagnetic nucleon form-factors data are studied with artificial
feed forward neural networks. As a result the unbiased model-independent
form-factor parametrizations are evaluated together with uncertainties. The
Bayesian approach for the neural networks is adapted for chi2 error-like
function and applied to the data analysis. The sequence of the feed forward
neural networks with one hidden layer of units is considered. The given neural
network represents a particular form-factor parametrization. The so-called
evidence (the measure of how much the data favor given statistical model) is
computed with the Bayesian framework and it is used to determine the best form
factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the
prior assumptions is added. The manuscript contains 4 new figures and 2 new
tables (32 pages, 15 figures, 2 tables
Triplet-Singlet Spin Relaxation via Nuclei in a Double Quantum Dot
The spin of a confined electron, when oriented originally in some direction,
will lose memory of that orientation after some time. Physical mechanisms
leading to this relaxation of spin memory typically involve either coupling of
the electron spin to its orbital motion or to nuclear spins. Relaxation of
confined electron spin has been previously measured only for Zeeman or exchange
split spin states, where spin-orbit effects dominate relaxation, while spin
flips due to nuclei have been observed in optical spectroscopy studies. Using
an isolated GaAs double quantum dot defined by electrostatic gates and direct
time domain measurements, we investigate in detail spin relaxation for
arbitrary splitting of spin states. Results demonstrate that electron spin
flips are dominated by nuclear interactions and are slowed by several orders of
magnitude when a magnetic field of a few millitesla is applied. These results
have significant implications for spin-based information processing
Abscisic Acid Insensitive 4 transcription factor is an important player in the response of Arabidopsis thaliana to two-spotted spider mite (Tetranychus urticae) feeding.
Plants growing in constantly changeable environmental conditions are compelled to evolve regulatory mechanisms to cope with biotic and abiotic stresses. Effective defence to invaders is largely connected with phytohormone regulation, resulting in the production of numerous defensive proteins and specialized metabolites. In our work, we elucidated the role of the Abscisic Acid Insensitive 4 (ABI4) transcription factor in the plant response to the two-spotted spider mite (TSSM). This polyphagous mite is one of the most destructive herbivores, which sucks mesophyll cells of numerous crop and wild plants. Compared to the wild-type (Col-0) Arabidopsis thaliana plants, the abi4 mutant demonstrated increased susceptibility to TSSM, reflected as enhanced female fecundity and greater frequency of mite leaf damage after trypan blue staining. Because ABI4 is regarded as an important player in the plastid-to-nucleus retrograde signalling process, we investigated the plastid envelope membrane dynamics using stroma-associated fluorescent marker. Our results indicated a clear increase in the number of stroma-filled tubular structures deriving from the plastid membrane (stromules) in the close proximity of the site of mite leaf damage, highlighting the importance of chloroplast-derived signals in the response to TSSM feeding activity
The RR Lyrae Distance Scale
We review seven methods of measuring the absolute magnitude M_V of RR Lyrae
stars in light of the Hipparcos mission and other recent developments. We focus
on identifying possible systematic errors and rank the methods by relative
immunity to such errors. For the three most robust methods, statistical
parallax, trigonometric parallax, and cluster kinematics, we find M_V (at
[Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods
cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and
theoretical models both yield a broad range of possible values (0.45-0.70 and
0.45-0.65) due to systematic uncertainties in the temperature scale and input
physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but
this may be due to a difference in the metallicity scales of the cluster giants
and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67
+/- 0.13 and is potentially very robust, but at present is too new to be fully
tested for systematics. If the three most robust methods are combined with
Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at
[Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21
pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose
Global health education: a pilot in trans-disciplinary, digital instruction
Background: The development of new global health academic programs provides unique opportunities to create innovative educational approaches within and across universities. Recent evidence suggests that digital media technologies may provide feasible and cost-effective alternatives to traditional classroom instruction; yet, many emerging global health academic programs lag behind in the utilization of modern technologies. Objective: We created an inter-departmental University of Southern California (USC) collaboration to develop and implement a course focused on digital media and global health. Design: Course curriculum was based on core tenants of modern education: multi-disciplinary, technologically advanced, learner-centered, and professional application of knowledge. Student and university evaluations were reviewed to qualitatively assess course satisfaction and educational outcomes. Results: ‘New Media for Global Health’ ran for 18 weeks in the Spring 2012 semester with N=41 students (56.1% global health and 43.9% digital studies students). The course resulted in a number of high quality global health-related digital media products available at http://iml420.wordpress.com/. Challenges confronted at USC included administrative challenges related to co-teaching and frustration from students conditioned to a rigid system of teacher-led learning within a specific discipline. Quantitative and qualitative course evaluations reflected positive feedback for the course instructors and mixed reviews for the organization of the course. Conclusion: The development of innovative educational programs in global health requires on-going experimentation and information sharing across departments and universities. Digital media technologies may have implications for future efforts to improve global health education
High energy emission from microquasars
The microquasar phenomenon is associated with the production of jets by X-ray
binaries and, as such, may be associated with the majority of such systems. In
this chapter we briefly outline the associations, definite, probable, possible,
and speculative, between such jets and X-ray, gamma-ray and particle emission.Comment: Contributing chapter to the book Cosmic Gamma-Ray Sources, K.S. Cheng
and G.E. Romero (eds.), to be published by Kluwer Academic Publishers,
Dordrecht, 2004. (19 pages
Recommended from our members
Planck 2015 results: XXVI. The Second Planck Catalogue of Compact Sources
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC)
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life
Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.National Science Foundation (U.S.) (Grant DEB 0830024)National Science Foundation (U.S.) (Grant DEB 0936234)United States. National Aeronautics and Space Administration (NASA Postdoctoral Fellowship
- …
