12,157 research outputs found
Explicit lower and upper bounds on the entangled value of multiplayer XOR games
XOR games are the simplest model in which the nonlocal properties of
entanglement manifest themselves. When there are two players, it is well known
that the bias --- the maximum advantage over random play --- of entangled
players can be at most a constant times greater than that of classical players.
Recently, P\'{e}rez-Garc\'{i}a et al. [Comm. Math. Phys. 279 (2), 2008] showed
that no such bound holds when there are three or more players: the advantage of
entangled players over classical players can become unbounded, and scale with
the number of questions in the game. Their proof relies on non-trivial results
from operator space theory, and gives a non-explicit existence proof, leading
to a game with a very large number of questions and only a loose control over
the local dimension of the players' shared entanglement.
We give a new, simple and explicit (though still probabilistic) construction
of a family of three-player XOR games which achieve a large quantum-classical
gap (QC-gap). This QC-gap is exponentially larger than the one given by
P\'{e}rez-Garc\'{i}a et. al. in terms of the size of the game, achieving a
QC-gap of order with questions per player. In terms of the
dimension of the entangled state required, we achieve the same (optimal) QC-gap
of for a state of local dimension per player. Moreover, the
optimal entangled strategy is very simple, involving observables defined by
tensor products of the Pauli matrices.
Additionally, we give the first upper bound on the maximal QC-gap in terms of
the number of questions per player, showing that our construction is only
quadratically off in that respect. Our results rely on probabilistic estimates
on the norm of random matrices and higher-order tensors which may be of
independent interest.Comment: Major improvements in presentation; results identica
Recommended from our members
Serotonergic innervation of the amygdala is increased in autism spectrum disorder and decreased in Williams syndrome.
BackgroundWilliams syndrome (WS) and autism spectrum disorder (ASD) are neurodevelopmental disorders that demonstrate overlapping genetic associations, dichotomous sociobehavioral phenotypes, and dichotomous pathological differences in neuronal distribution in key social brain areas, including the prefrontal cortex and the amygdala. The serotonergic system is critical to many processes underlying neurodevelopment and is additionally an important neuromodulator associated with behavioral variation. The amygdala is heavily innervated by serotonergic projections, suggesting that the serotonergic system is a significant mediator of neuronal activity. Disruptions to the serotonergic system, and atypical structure and function of the amygdala, are implicated in both WS and ASD.MethodsWe quantified the serotonergic axon density in the four major subdivisions of the amygdala in the postmortem brains of individuals diagnosed with ASD and WS and neurotypical (NT) brains.ResultsWe found opposing directions of change in serotonergic innervation in the two disorders, with ASD displaying an increase in serotonergic axons compared to NT and WS displaying a decrease. Significant differences (p < 0.05) were observed between WS and ASD data sets across multiple amygdala nuclei.LimitationsThis study is limited by the availability of human postmortem tissue. Small sample size is an unavoidable limitation of most postmortem human brain research and particularly postmortem research in rare disorders.ConclusionsDifferential alterations to serotonergic innervation of the amygdala may contribute to differences in sociobehavioral phenotype in WS and ASD. These findings will inform future work identifying targets for future therapeutics in these and other disorders characterized by atypical social behavior
Weak and Strong coupling regimes in plasmonic-QED
We present a quantum theory for the interaction of a two level emitter with
surface plasmon polaritons confined in single-mode waveguide resonators. Based
on the Green's function approach, we develop the conditions for the weak and
strong coupling regimes by taking into account the sources of dissipation and
decoherence: radiative and non-radiative decays, internal loss processes in the
emitter, as well as propagation and leakage losses of the plasmons in the
resonator. The theory is supported by numerical calculations for several
quantum emitters, GaAs and CdSe quantum dots and NV centers together with
different types of resonators constructed of hybrid, cylindrical or wedge
waveguides. We further study the role of temperature and resonator length.
Assuming realistic leakage rates, we find the existence of an optimal length at
which strong coupling is possible. Our calculations show that the strong
coupling regime in plasmonic resonators is accessible within current technology
when working at very low temperatures (<4K). In the weak coupling regime our
theory accounts for recent experimental results. By further optimization we
find highly enhanced spontaneous emission with Purcell factors over 1000 at
room temperature for NV-centers. We finally discuss more applications for
quantum nonlinear optics and plasmon-plasmon interactions.Comment: published as Phys. Rev. B 87, 115419 (2013
On the behavior of micro-spheres in a hydrogen pellet target
A pellet target produces micro-spheres of different materials, which are used
as an internal target for nuclear and particle physics studies. We will
describe the pellet hydrogen behavior by means of fluid dynamics and
thermodynamics. In particular one aim is to theoretically understand the
cooling effect in order to find an effective method to optimize the working
conditions of a pellet target. During the droplet formation the evaporative
cooling is best described by a multi-droplet diffusion-controlled model, while
in vacuum, the evaporation follows the (revised) Hertz-Knudsen formula.
Experimental observations compared with calculations clearly indicated the
presence of supercooling, the effect of which is discussed as well.Comment: 22 pages, 8 figures (of which two are significantly compressed for
easier download
Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults
Objective: Executive cognitive functioning is essential in private and working life and is sensitive to stress and aging. Cardiovascular (CV) health factors are related to cognitive decline and dementia, but there is relatively few studies of the role of CV autonomic regulation, a key component in stress responses and risk factor for cardiovascular disease (CVD), and executive processes. An emerging pattern of results from previous studies suggest that different executive processes may be differentially associated with CV autonomic regulation. The aim was thus to study the associations between multiple measures of CV autonomic regulation and measures of different executive cognitive processes. Method: Participants were 119 healthy working adults (79% women), from the Swedish Longitudinal Occupational Survey of Health. Electrocardiogram was sampled for analysis of heart rate variability (HRV) measures, including the Standard Deviation of NN, here heart beats (SDNN), root of the mean squares of successive differences (RMSSD), high frequency (HF) power band from spectral analyses, and QT variability index (QTVI), a measure of myocardial repolarization patterns. Executive cognitive functioning was measured by seven neuropsychological tests. The relationships between CV autonomic regulation measures and executive cognitive measures were tested with bivariate and partial correlational analyses, controlling for demographic variables, and mental health symptoms. Results: Higher SDNN and RMSSD and lower QTVI were significantly associated with better performance on cognitive tests tapping inhibition, updating, shifting, and psychomotor speed. After adjustments for demographic factors however (age being the greatest confounder), only QTVI was clearly associated with these executive tests. No such associations were seen for working memory capacity. Conclusion: Poorer CV autonomic regulation in terms of lower SDNN and RMSSD and higher QTVI was associated with poorer executive cognitive functioning in terms of inhibition, shifting, updating, and speed in healthy working adults. Age could largely explain the associations between the executive measures and SDNN and RMSSD, while associations with QTVI remained. QTVI may be a useful measure of autonomic regulation and promising as an early indicator of risk among otherwise healthy adults, compared to traditional HRV measures, as associations between QTVI and executive functioning was not affected by age
Coherent Electron-Phonon Coupling in Tailored Quantum Systems
The coupling between a two-level system and its environment leads to
decoherence. Within the context of coherent manipulation of electronic or
quasiparticle states in nanostructures, it is crucial to understand the sources
of decoherence. Here, we study the effect of electron-phonon coupling in a
graphene and an InAs nanowire double quantum dot. Our measurements reveal
oscillations of the double quantum dot current periodic in energy detuning
between the two levels. These periodic peaks are more pronounced in the
nanowire than in graphene, and disappear when the temperature is increased. We
attribute the oscillations to an interference effect between two alternative
inelastic decay paths involving acoustic phonons present in these materials.
This interpretation predicts the oscillations to wash out when temperature is
increased, as observed experimentally.Comment: 11 pages, 4 figure
Reconstruction of the joint state of a two-mode Bose-Einstein condensate
We propose a scheme to reconstruct the state of a two-mode Bose-Einstein
condensate, with a given total number of atoms, using an atom interferometer
that requires beam splitter, phase shift and non-ideal atom counting
operations. The density matrix in the number-state basis can be computed
directly from the probabilities of different counts for various phase shifts
between the original modes, unless the beamsplitter is exactly balanced.
Simulated noisy data from a two-mode coherent state is produced and the state
is reconstructed, for 49 atoms. The error can be estimated from the singular
values of the transformation matrix between state and probability data.Comment: 4 pages (REVTeX), 5 figures (PostScript
Performance of the ARIANNA Hexagonal Radio Array
Installation of the ARIANNA Hexagonal Radio Array (HRA) on the Ross Ice Shelf
of Antarctica has been completed. This detector serves as a pilot program to
the ARIANNA neutrino telescope, which aims to measure the diffuse flux of very
high energy neutrinos by observing the radio pulse generated by
neutrino-induced charged particle showers in the ice. All HRA stations ran
reliably and took data during the entire 2014-2015 austral summer season. A new
radio signal direction reconstruction procedure is described, and is observed
to have a resolution better than a degree. The reconstruction is used in a
preliminary search for potential neutrino candidate events in the data from one
of the newly installed detector stations. Three cuts are used to separate radio
backgrounds from neutrino signals. The cuts are found to filter out all data
recorded by the station during the season while preserving 85.4% of simulated
neutrino events that trigger the station. This efficiency is similar to that
found in analyses of previous HRA data taking seasons.Comment: Proceedings from the 34th ICRC2015, http://icrc2015.nl/ . 8 pages, 6
figure
TeV Particle Astrophysics II: Summary comments
A unifying theme of this conference was the use of different approaches to
understand astrophysical sources of energetic particles in the TeV range and
above. In this summary I review how gamma-ray astronomy, neutrino astronomy and
(to some extent) gravitational wave astronomy provide complementary avenues to
understanding the origin and role of high-energy particles in energetic
astrophysical sources.Comment: 6 pages, 4 figures; Conference summary talk for "TeV Particle
Astrophysics II" at University of Wisconsin, Madison, 28-31 August 200
- …
