12,157 research outputs found

    Explicit lower and upper bounds on the entangled value of multiplayer XOR games

    Get PDF
    XOR games are the simplest model in which the nonlocal properties of entanglement manifest themselves. When there are two players, it is well known that the bias --- the maximum advantage over random play --- of entangled players can be at most a constant times greater than that of classical players. Recently, P\'{e}rez-Garc\'{i}a et al. [Comm. Math. Phys. 279 (2), 2008] showed that no such bound holds when there are three or more players: the advantage of entangled players over classical players can become unbounded, and scale with the number of questions in the game. Their proof relies on non-trivial results from operator space theory, and gives a non-explicit existence proof, leading to a game with a very large number of questions and only a loose control over the local dimension of the players' shared entanglement. We give a new, simple and explicit (though still probabilistic) construction of a family of three-player XOR games which achieve a large quantum-classical gap (QC-gap). This QC-gap is exponentially larger than the one given by P\'{e}rez-Garc\'{i}a et. al. in terms of the size of the game, achieving a QC-gap of order N\sqrt{N} with N2N^2 questions per player. In terms of the dimension of the entangled state required, we achieve the same (optimal) QC-gap of N\sqrt{N} for a state of local dimension NN per player. Moreover, the optimal entangled strategy is very simple, involving observables defined by tensor products of the Pauli matrices. Additionally, we give the first upper bound on the maximal QC-gap in terms of the number of questions per player, showing that our construction is only quadratically off in that respect. Our results rely on probabilistic estimates on the norm of random matrices and higher-order tensors which may be of independent interest.Comment: Major improvements in presentation; results identica

    Weak and Strong coupling regimes in plasmonic-QED

    Full text link
    We present a quantum theory for the interaction of a two level emitter with surface plasmon polaritons confined in single-mode waveguide resonators. Based on the Green's function approach, we develop the conditions for the weak and strong coupling regimes by taking into account the sources of dissipation and decoherence: radiative and non-radiative decays, internal loss processes in the emitter, as well as propagation and leakage losses of the plasmons in the resonator. The theory is supported by numerical calculations for several quantum emitters, GaAs and CdSe quantum dots and NV centers together with different types of resonators constructed of hybrid, cylindrical or wedge waveguides. We further study the role of temperature and resonator length. Assuming realistic leakage rates, we find the existence of an optimal length at which strong coupling is possible. Our calculations show that the strong coupling regime in plasmonic resonators is accessible within current technology when working at very low temperatures (<4K). In the weak coupling regime our theory accounts for recent experimental results. By further optimization we find highly enhanced spontaneous emission with Purcell factors over 1000 at room temperature for NV-centers. We finally discuss more applications for quantum nonlinear optics and plasmon-plasmon interactions.Comment: published as Phys. Rev. B 87, 115419 (2013

    On the behavior of micro-spheres in a hydrogen pellet target

    Full text link
    A pellet target produces micro-spheres of different materials, which are used as an internal target for nuclear and particle physics studies. We will describe the pellet hydrogen behavior by means of fluid dynamics and thermodynamics. In particular one aim is to theoretically understand the cooling effect in order to find an effective method to optimize the working conditions of a pellet target. During the droplet formation the evaporative cooling is best described by a multi-droplet diffusion-controlled model, while in vacuum, the evaporation follows the (revised) Hertz-Knudsen formula. Experimental observations compared with calculations clearly indicated the presence of supercooling, the effect of which is discussed as well.Comment: 22 pages, 8 figures (of which two are significantly compressed for easier download

    Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults

    Get PDF
    Objective: Executive cognitive functioning is essential in private and working life and is sensitive to stress and aging. Cardiovascular (CV) health factors are related to cognitive decline and dementia, but there is relatively few studies of the role of CV autonomic regulation, a key component in stress responses and risk factor for cardiovascular disease (CVD), and executive processes. An emerging pattern of results from previous studies suggest that different executive processes may be differentially associated with CV autonomic regulation. The aim was thus to study the associations between multiple measures of CV autonomic regulation and measures of different executive cognitive processes. Method: Participants were 119 healthy working adults (79% women), from the Swedish Longitudinal Occupational Survey of Health. Electrocardiogram was sampled for analysis of heart rate variability (HRV) measures, including the Standard Deviation of NN, here heart beats (SDNN), root of the mean squares of successive differences (RMSSD), high frequency (HF) power band from spectral analyses, and QT variability index (QTVI), a measure of myocardial repolarization patterns. Executive cognitive functioning was measured by seven neuropsychological tests. The relationships between CV autonomic regulation measures and executive cognitive measures were tested with bivariate and partial correlational analyses, controlling for demographic variables, and mental health symptoms. Results: Higher SDNN and RMSSD and lower QTVI were significantly associated with better performance on cognitive tests tapping inhibition, updating, shifting, and psychomotor speed. After adjustments for demographic factors however (age being the greatest confounder), only QTVI was clearly associated with these executive tests. No such associations were seen for working memory capacity. Conclusion: Poorer CV autonomic regulation in terms of lower SDNN and RMSSD and higher QTVI was associated with poorer executive cognitive functioning in terms of inhibition, shifting, updating, and speed in healthy working adults. Age could largely explain the associations between the executive measures and SDNN and RMSSD, while associations with QTVI remained. QTVI may be a useful measure of autonomic regulation and promising as an early indicator of risk among otherwise healthy adults, compared to traditional HRV measures, as associations between QTVI and executive functioning was not affected by age

    Coherent Electron-Phonon Coupling in Tailored Quantum Systems

    Full text link
    The coupling between a two-level system and its environment leads to decoherence. Within the context of coherent manipulation of electronic or quasiparticle states in nanostructures, it is crucial to understand the sources of decoherence. Here, we study the effect of electron-phonon coupling in a graphene and an InAs nanowire double quantum dot. Our measurements reveal oscillations of the double quantum dot current periodic in energy detuning between the two levels. These periodic peaks are more pronounced in the nanowire than in graphene, and disappear when the temperature is increased. We attribute the oscillations to an interference effect between two alternative inelastic decay paths involving acoustic phonons present in these materials. This interpretation predicts the oscillations to wash out when temperature is increased, as observed experimentally.Comment: 11 pages, 4 figure

    Reconstruction of the joint state of a two-mode Bose-Einstein condensate

    Get PDF
    We propose a scheme to reconstruct the state of a two-mode Bose-Einstein condensate, with a given total number of atoms, using an atom interferometer that requires beam splitter, phase shift and non-ideal atom counting operations. The density matrix in the number-state basis can be computed directly from the probabilities of different counts for various phase shifts between the original modes, unless the beamsplitter is exactly balanced. Simulated noisy data from a two-mode coherent state is produced and the state is reconstructed, for 49 atoms. The error can be estimated from the singular values of the transformation matrix between state and probability data.Comment: 4 pages (REVTeX), 5 figures (PostScript

    Performance of the ARIANNA Hexagonal Radio Array

    Get PDF
    Installation of the ARIANNA Hexagonal Radio Array (HRA) on the Ross Ice Shelf of Antarctica has been completed. This detector serves as a pilot program to the ARIANNA neutrino telescope, which aims to measure the diffuse flux of very high energy neutrinos by observing the radio pulse generated by neutrino-induced charged particle showers in the ice. All HRA stations ran reliably and took data during the entire 2014-2015 austral summer season. A new radio signal direction reconstruction procedure is described, and is observed to have a resolution better than a degree. The reconstruction is used in a preliminary search for potential neutrino candidate events in the data from one of the newly installed detector stations. Three cuts are used to separate radio backgrounds from neutrino signals. The cuts are found to filter out all data recorded by the station during the season while preserving 85.4% of simulated neutrino events that trigger the station. This efficiency is similar to that found in analyses of previous HRA data taking seasons.Comment: Proceedings from the 34th ICRC2015, http://icrc2015.nl/ . 8 pages, 6 figure

    TeV Particle Astrophysics II: Summary comments

    Get PDF
    A unifying theme of this conference was the use of different approaches to understand astrophysical sources of energetic particles in the TeV range and above. In this summary I review how gamma-ray astronomy, neutrino astronomy and (to some extent) gravitational wave astronomy provide complementary avenues to understanding the origin and role of high-energy particles in energetic astrophysical sources.Comment: 6 pages, 4 figures; Conference summary talk for "TeV Particle Astrophysics II" at University of Wisconsin, Madison, 28-31 August 200
    corecore