16,463 research outputs found

    Broken-Symmetry States of Dirac Fermions in Graphene with A Partially Filled High Landau Level

    Get PDF
    We report on numerical study of the Dirac fermions in partially filled N=3 Landau level (LL) in graphene. At half-filling, the equal-time density-density correlation function displays sharp peaks at nonzero wavevectors ±q\pm {\bf q^{*}}. Finite-size scaling shows that the peak value grows with electron number and diverges in the thermodynamic limit, which suggests an instability toward a charge density wave. A symmetry broken stripe phase is formed at large system size limit, which is robust against purturbation from disorder scattering. Such a quantum phase is experimentally observable through transport measurements. Associated with the special wavefunctions of the Dirac LL, both stripe and bubble phases become possible candidates for the ground state of the Dirac fermions in graphene with lower filling factors in the N=3 LL.Comment: Contains are slightly changed. Journal reference and DOI are adde

    Particle-Hole Symmetry Breaking and the 5/2 Fractional Quantum Hall Effect

    Get PDF
    We report on the study of the fractional quantum Hall effect at the filling factor 5/2 using exact diagonalization method with torus geometry. The particle-hole symmetry breaking effect is considered using an additional three-body interaction. Both Pfaffian and anti-Pfaffian states can be the ground state depending on the sign of the three-body interaction. The results of the low-energy spectrum, the wave function overlap, and the particle-hole parity evolution, have shown the clear evidence of a direct sharp transition (possibly first-order) from the Pfaffian to the anti-Pfaffian state at the Coulomb point. A quantum phase diagram is established, where one finds further transitions from the Pfaffian or anti-Pfaffian state to the nearby compressible phases induced by a change of the pseudopotential.Comment: 4 pages, 4 figure

    Determination of the electronic structure of bilayer graphene from infrared spectroscopy results

    Get PDF
    We present an experimental study of the infrared conductivity, transmission, and reflection of a gated bilayer graphene and their theoretical analysis within the Slonczewski-Weiss-McClure (SWMc) model. The infrared response is shown to be governed by the interplay of the interband and the intraband transitions among the four bands of the bilayer. The position of the main conductivity peak at the charge neutrality point is determined by the interlayer tunneling frequency. The shift of this peak as a function of the gate voltage gives information about less known parameters of the SWMc model, in particular, those responsible for the electron-hole and sublattice asymmetries. These parameter values are shown to be consistent with recent electronic structure calculations for the bilayer graphene and the SWMc parameters commonly used for the bulk graphite.Comment: (v2) 11 pages, 7 figures; Important typo fixes and bibliography addition

    Medium-induced multi-photon radiation

    Full text link
    We study the spectrum of multi-photon radiation off a fast quark in medium in the BDMPS/ASW approach. We reproduce the medium-induced one-photon radiation spectrum in dipole approximation, and go on to calculate the two-photon radiation in the Moli\`{e}re limit. We find that in this limit the LPM effect holds for medium-induced two-photon ladder emission.Comment: 5 pages, 1 figure. Proceedings of Hot Quarks 2010, La Londe Les Maures, Franc

    Cellular Ability to Sense Spatial Gradients in the Presence of Multiple Competitive Ligands

    Full text link
    Many eukaryotic and prokaryotic cells can exhibit remarkable sensing ability under small gradient of chemical compound. In this study, we approach this phenomenon by considering the contribution of multiple ligands to the chemical kinetics within Michaelis-Menten model. This work was inspired by the recent theoretical findings from Bo Hu et al. [Phys. Rev. Lett. 105, 048104 (2010)], our treatment with practical binding energies and chemical potential provides the results which are consistent with experimental observations.Comment: 5 pages, 4 figure

    MHD Seismology of a Coronal Loop System by the First Two Modes of Standing Kink Waves

    Full text link
    We report the observation of the first two harmonics of the horizontally polarized kink waves excited in a coronal loop system lying at south-east of AR 11719 on 2013 April 11. The detected periods of the fundamental mode (P1P_1), its first overtone (P2P_2) in the northern half, and that in the southern one are 530.2±13.3530.2 \pm 13.3, 300.4±27.7300.4 \pm 27.7, and 334.7±22.1334.7 \pm 22.1 s, respectively. The periods of the first overtone in the two halves are the same considering uncertainties in the measurement. We estimate the average electron density, temperature, and length of the loop system as (5.1±0.8)×108(5.1 \pm 0.8) \times 10^8 cm3^{-3}, 0.65±0.060.65 \pm 0.06 MK, and 203.8±13.8203.8 \pm 13.8 Mm, respectively. As a zeroth order estimation, the magnetic field strength, B=8.2±1.0B = 8.2 \pm 1.0 G, derived by the coronal seismology using the fundamental kink mode matches with that derived by a potential field model. The extrapolation model also shows the asymmetric and nonuniform distribution of the magnetic field along the coronal loop. Using the amplitude profile distributions of both the fundamental mode and its first overtone, we observe that the antinode positions of both the fundamental mode and its first overtone shift towards the weak field region along the coronal loop. The results indicate that the density stratification and the temperature difference effects are larger than the magnetic field variation effect on the period ratio. On the other hand, the magnetic field variation has a greater effect on the eigenfunction of the first overtone than the density stratification does for this case.Comment: 24 pages, 6 figures, 1 table, accepted for publication in Ap

    PPAK Wide-field Integral Field Spectroscopy of NGC 628: I. The largest spectroscopic mosaic on a single galaxy

    Full text link
    We present a wide-field IFS survey on the nearby face-on Sbc galaxy NGC 628, comprising 11094 individual spectra, covering a nearly circular field-of-view of ~6 arcmin in diameter, with a sampling of ~2.7 arcsec per spectrum in the optical wavelength range (3700--7000 AA). This galaxy is part of the PPAK IFS Nearby Galaxies Survey, (PINGS, Rosales-Ortega et al. 2009). To our knowledge, this is the widest spectroscopic survey ever made in a single nearby galaxy. A detailed flux calibration was applied, granting a spectrophotometric accuracy of \sim\,0.2 mag. The age of the stellar populations shows a negative gradient from the inner (older) to the outer (younger) regions. We found an inversion of this gradient in the central ~1 kpc region, where a somewhat younger stellar population is present within a ring at this radius. This structure is associated with a circumnuclear star-forming region at ~ 500 pc, also found in similar spiral galaxies. From the study of the integrated and spatially resolved ionized gas we found a moderate SFR of ~ 2.4 Msun yr1^{-1}. The oxygen abundance shows a a clear gradient of higher metallicity values from the inner part to the outer part of the galaxy, with a mean value of 12~+~log(O/H) ~ 8.7. At some specific regions of the galaxy, the spatially resolved distribution of the physical properties show some level of structure, suggesting real point-to-point variations within an individual \hh region. Our results are consistent with an inside-out growth scheme, with stronger star formation at the outer regions, and with evolved stellar populations in the inner ones.Comment: 31 pages, 22 Figuras, Accepted for Publishing in MNRAS (corrected PDF

    Hamiltonian formalism of the DNLS equation with nonvanished boundary value

    Full text link
    Hamiltonian formalism of the DNLS equation with nonvanishing boundary value is developed by the standard procedure.Comment: 11 page

    Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states

    Full text link
    A proof of Bell's theorem without inequalities valid for both inequivalent classes of three-qubit entangled states under local operations assisted by classical communication, namely Greenberger-Horne-Zeilinger (GHZ) and W, is described. This proof leads to a Bell inequality that allows more conclusive tests of Bell's theorem for three-qubit systems. Another Bell inequality involving both tri- and bipartite correlations is introduced which illustrates the different violations of local realism exhibited by the GHZ and W states.Comment: REVTeX4, 5 pages, 3 figure
    corecore