878 research outputs found
Fine motor control in using pen for writing and copying: in the impaired and healthy brain
The central issue of the dissertation is to investigate the neural-cognitive basis of writing and copying figures focusing on fine motor abilities. The neuronal recycling hypothesis is used as the theoretical framework, assuming that the ability to use pen emerged from other closely related cognitive abilities. The thesis contained four independent studies with either ischemic stroke patients or healthy participants. Chapter 2 describe the general methods used in our study. Chapter 3 is a neuropsychological study that utilizes principle component analysis and voxel-based morphometry. It explores the neural-cognitive basis underlying complex figure copying (CFC). It demonstrates the involvement of different processing stages that supports figure copying along the dorsal pathway, from visual through eye-hand coordination to the motor associative cortex. Chapters 4-6 focus on writing abilities, across two different systems: phonological and logographic. Chapter 4, is a neuropsychological study that utilized machine learning to explore the latent relationship between writing with other cognitive tasks in English and Chinese. Across the two-writing systems impairment in writing skills could be reliably classified using the same features. These cognitive features were related to CFC, attention, reading, memory and age. Chapter 5 presents two neuropsychological studies that examine the neuro-cognitive makeup of the ability to write words (phonological) and numbers (logographic). The first study is a detail comorbidity analysis of writing deficits of words, numbers, language and motor deficits. It demonstrates that pure writing deficits are very rare, with the majority of writing deficits overlapping with motor (CFC) or language impairments. The second study in this chapter is a VBM study focus on writing numbers and words. We identified two dissociable networks that have been specifically evolved to support writing: a visual-manual motor ability to use pen mediated by right angular and middle frontal gyri; and an ability to transform symbolic representations grapheme to manual programs for use with the pen. Chapter 6 is an fMRI study with healthy participants investigating the neural substrates associated with writing English, Chinese and Pinyin. The study identifies different brain networks that support writing abilities across writing systems: visual information perception and visual motor transformation, semantic component. Chapter 7, summarize and compare the main finding of the four studies. Overall, the studies demonstrate the close relations between the sue of pen and other more basic cognitive functions, such as control of hand movement, language, attention. As predicted by the neuronal recycling hypothesis there were minimal pure deficits of writing or copying; and for proficient writers, the same neural structures supported different writing systems
SGLD-Based Information Criteria and the Over-Parameterized Regime
Double-descent refers to the unexpected drop in test loss of a learning
algorithm beyond an interpolating threshold with over-parameterization, which
is not predicted by information criteria in their classical forms due to the
limitations in the standard asymptotic approach. We update these analyses using
the information risk minimization framework and provide Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) for models learned by
stochastic gradient Langevin dynamics (SGLD). Notably, the AIC and BIC penalty
terms for SGLD correspond to specific information measures, i.e., symmetrized
KL information and KL divergence. We extend this information-theoretic analysis
to over-parameterized models by characterizing the SGLD-based BIC for the
random feature model in the regime where the number of parameters and the
number of samples tend to infinity, with fixed. Our experiments
demonstrate that the refined SGLD-based BIC can track the double-descent curve,
providing meaningful guidance for model selection and revealing new insights
into the behavior of SGLD learning algorithms in the over-parameterized regime
Histogram-Based Flash Channel Estimation
Current generation Flash devices experience significant read-channel
degradation from damage to the oxide layer during program and erase operations.
Information about the read-channel degradation drives advanced signal
processing methods in Flash to mitigate its effect. In this context, channel
estimation must be ongoing since channel degradation evolves over time and as a
function of the number of program/erase (P/E) cycles. This paper proposes a
framework for ongoing model-based channel estimation using limited channel
measurements (reads). This paper uses a channel model characterizing
degradation resulting from retention time and the amount of charge programmed
and erased. For channel histogram measurements, bin selection to achieve
approximately equal-probability bins yields a good approximation to the
original distribution using only ten bins (i.e. nine reads). With the channel
model and binning strategy in place, this paper explores candidate numerical
least squares algorithms and ultimately demonstrates the effectiveness of the
Levenberg-Marquardt algorithm which provides both speed and accuracy.Comment: 6 pages, 8 figures, Submitted to the IEEE International
Communications Conference (ICC) 201
Synthesis, Characterization, and Tribological Behavior of Oleic Acid Capped Graphene Oxide
Graphene oxide (GO) nanosheets were prepared by modified Hummers and Offeman methods. Furthermore, oleic acid (OA) capped graphene oxide (OACGO) nanosheets were prepared and characterized by means of Fourier transform-infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). At the same time, the friction and wear properties of OA capped graphite powder (OACG), OACGO, and oleic acid capped precipitate of graphite (OACPG) as additives in poly-alpha-olefin (PAO) were compared using four-ball tester and SRV-1 reciprocating ball-on-disc friction and wear tester. By the addition of OACGO to PAO, the antiwear ability was improved and the friction coefficient was decreased. Also, the tribological mechanism of the GO was investigated
New Technology and Experimental Study on Snow-Melting Heated Pavement System in Tunnel Portal
In recent years, with the rapid growth of economy and sharp rise of motor vehicles in China, the pavement skid resistance in tunnel portals has become increasingly important in cold region. However, the deicing salt, snow removal with machine, and other antiskid measures adopted by highway maintenance division have many limitations. To improve the treatment effect, we proposed a new snow-melting approach employing electric heat tracing, in which heating cables are installed in the structural layer of road. Through the field experiment, laboratory experiment, and numerical investigation, structure type, heating power, and preheating time of the flexible pavement heating system in tunnel portal were systematically analyzed, and advantages of electric heat tracing technology in improving the pavement skid resistance in tunnel portal were also presented. Therefore, such new technology, which offers new snow-melting methods for tunnel portal, bridge, mountainous area, and large longitudinal slope in cold region, has promising prospect for extensive application
Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively
The CLIP and Segment Anything Model (SAM) are remarkable vision foundation
models (VFMs). SAM excels in segmentation tasks across diverse domains, while
CLIP is renowned for its zero-shot recognition capabilities. This paper
presents an in-depth exploration of integrating these two models into a unified
framework. Specifically, we introduce the Open-Vocabulary SAM, a SAM-inspired
model designed for simultaneous interactive segmentation and recognition,
leveraging two unique knowledge transfer modules: SAM2CLIP and CLIP2SAM. The
former adapts SAM's knowledge into the CLIP via distillation and learnable
transformer adapters, while the latter transfers CLIP knowledge into SAM,
enhancing its recognition capabilities. Extensive experiments on various
datasets and detectors show the effectiveness of Open-Vocabulary SAM in both
segmentation and recognition tasks, significantly outperforming the naive
baselines of simply combining SAM and CLIP. Furthermore, aided with image
classification data training, our method can segment and recognize
approximately 22,000 classes.Comment: Project page: https://www.mmlab-ntu.com/project/ovsa
Enhanced Equilibria-Solving via Private Information Pre-Branch Structure in Adversarial Team Games
In ex ante coordinated adversarial team games (ATGs), a team competes against
an adversary, and the team members are only allowed to coordinate their
strategies before the game starts. The team-maxmin equilibrium with correlation
(TMECor) is a suitable solution concept for ATGs. One class of TMECor-solving
methods transforms the problem into solving NE in two-player zero-sum games,
leveraging well-established tools for the latter. However, existing methods are
fundamentally action-based, resulting in poor generalizability and low solving
efficiency due to the exponential growth in the size of the transformed game.
To address the above issues, we propose an efficient game transformation method
based on private information, where all team members are represented by a
single coordinator. We designed a structure called private information
pre-branch, which makes decisions considering all possible private information
from teammates. We prove that the size of the game transformed by our method is
exponentially reduced compared to the current state-of-the-art. Moreover, we
demonstrate equilibria equivalence. Experimentally, our method achieves a
significant speedup of 182.89 to 694.44 in scenarios where the
current state-of-the-art method can work, such as small-scale Kuhn poker and
Leduc poker. Furthermore, our method is applicable to larger games and those
with dynamically changing private information, such as Goofspiel.Comment: 13 pages, 4 figure
Global-Local Stepwise Generative Network for Ultra High-Resolution Image Restoration
While the research on image background restoration from regular size of
degraded images has achieved remarkable progress, restoring ultra
high-resolution (e.g., 4K) images remains an extremely challenging task due to
the explosion of computational complexity and memory usage, as well as the
deficiency of annotated data. In this paper we present a novel model for ultra
high-resolution image restoration, referred to as the Global-Local Stepwise
Generative Network (GLSGN), which employs a stepwise restoring strategy
involving four restoring pathways: three local pathways and one global pathway.
The local pathways focus on conducting image restoration in a fine-grained
manner over local but high-resolution image patches, while the global pathway
performs image restoration coarsely on the scale-down but intact image to
provide cues for the local pathways in a global view including semantics and
noise patterns. To smooth the mutual collaboration between these four pathways,
our GLSGN is designed to ensure the inter-pathway consistency in four aspects
in terms of low-level content, perceptual attention, restoring intensity and
high-level semantics, respectively. As another major contribution of this work,
we also introduce the first ultra high-resolution dataset to date for both
reflection removal and rain streak removal, comprising 4,670 real-world and
synthetic images. Extensive experiments across three typical tasks for image
background restoration, including image reflection removal, image rain streak
removal and image dehazing, show that our GLSGN consistently outperforms
state-of-the-art methods.Comment: submmitted to Transactions on Image Processin
Determination of grounding line on the Amery Ice Shelf using Sentinel-1 radar interferometry data
Delineation of the grounding line (GL) is necessary for calculating the mass balance of Antarctica, but GL measurements for most of the continent remain at a relatively coarse level. We used Sentinel-1 constellation data to map the GL of the Amery Ice Shelf (AIS) using double-differential synthetic aperture radar interferometry. The ice thickness anomaly deduced from hydrostatic equilibrium and existing Antarctic GL products is compared with our result. With this new and very accurate GL, we detected new ice rises in the north of the AIS. Our new measurement shows no major change of the AIS GL, particularly in the southernmost part
- …
