82 research outputs found

    Ghosts in the data: false detections in VEMCO pulse position modulation acoustic telemetry monitoring equipment

    Get PDF
    Background: False-positive data (better known as "false detections") in VEMCO VR2 acoustic telemetry monitoring studies that use pulse position modulation coding can cause biased or erroneous outcomes in data analysis. To understand the occurrence of false detections in acoustic monitoring data sets, the results of a range test experiment using eight acoustic receivers and 12 transmitters were examined. Results: One hundred and fifty one tag ID codes were recorded, 137 of which were identified as likely from false detections, 12 were from test tags, and two were from tagged sharks. False detections accounted for < 0.05 % of detections (918) in the experiment. False detection tag ID codes were not randomly distributed amongst the available codes, being more likely to occur at IDs close to tags used in the experiment. Receivers located near the bottom recorded the most false detections and tag ID codes from false detections. Receivers at the same depth did not differ significantly in the mean number of daily false detections. The daily number of false detections recorded by a receiver did not conform to a random pattern, and was not strongly correlated with daily receiver performance. Conclusions: In an era of increasing data sharing and public storage of scientific data, the occurrence of false detections is of significant concern and the results of this study demonstrate that while rare they do occur and can be identified and accounted for in analyses

    Editorial: Small cetacean conservation: Current challenges and opportunities

    Get PDF
    Dolphins (oceanic and river dolphins; Delphinidae, Iniidae, Lipotidae, Pontoporiidae, Platanistidae) and porpoises (Phocoenidae) are the smallest members of the odontocete suborder. These species have colonized most aquatic ecosystems globally, from rivers to deep oceanic habitats, and from tropical to polar waters. Due to their habitat preferences, high metabolic rates, foraging behaviors, and diets, small cetaceans exhibit a wide range of ecological roles and functions across ecosystems where they occur and have the potential to affect communities via multiple pathways (top-down, bottom-up effects, and a range of behavior-mediated processes, Kiszka et al.). Dolphins and porpoises have also generated significant interest from the scientific community and more broadly by human societies since antiquity, with research on these animals increasing exponentially over the past 40-50 years. Despite protection by a range of international conventions (e.g., Convention on Migratory Species, Convention on the Trade of Endangered Species) and national legislation in most countries, some species are at increasing risk of decline and extirpation in aquatic habitats worldwide, with losses driven by a range of direct and indirect impacts from human activities. Today, more than 20% of species of oceanic dolphins, half of all species of porpoise, and all river dolphins are threatened with extinctionFil: Kiszka, Jeremy J.. Florida International University; Estados UnidosFil: Bejder, Lars. University of Hawaii at Manoa; Estados UnidosFil: Davis, Randall. Texas A&M University; Estados UnidosFil: Harcourt, Rob. Macquarie University; AustraliaFil: Meekan, Mark. University of Western Australia; AustraliaFil: Rodriguez, Diego Horacio. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Stockin, Karen A.. Massey University; Nueva Zeland

    Future directions in Eubalaena spp. : comparative research to inform conservation

    Get PDF
    All three extant right whales [Eubalaena australis (Southern; SRW), glacialis (North Atlantic; NARW), and japonica (North Pacific; NPRW)] were heavily exploited, and the status of the two northern hemisphere species remains precarious. Recently, limited gains made by the NARW have been reversed and urgent changes to management approaches are needed if extinction is to be averted. By contrast, some SRW populations are recovering. Given their close phylogenetic relationship, morphological, demographic, and ecological similarities, the contrasting recovery rates between populations and species provide an opportunity to apply a comparative approach to inform the differences in recovery as follows. (1) Recovery: All right whale species were internationally protected in 1931, but NARW, eastern NPRW and some SRW populations have barely recovered from whaling, while others are doing so at maximal rates. Are these differences a legacy of extreme depletion (e.g., loss of genetic diversity and cultural knowledge) or primarily due to anthropogenic factors (e.g., high mortality from ship strike and fisheries entanglement)? If modern anthropogenic threats are not affecting remote SRW populations, can these serve as baseline populations for comparison with NARW and NPRW? (2) Linking individuals to population-level responses: In wild mammals, strong links exist between reproductive indices and environmental conditions within the context of life-history strategies. Individual identification of whales provides the ability to track survival, reproduction and other demographic parameters, and their population-level consequences, providing the tools with which to uncover these links. Robust life-history analyses are now available for NARW and several SRW populations, linking demography with environmental conditions, providing the potential for teasing out important influencing factors. (3) Adapting to shifting resources: Recent reproductive declines in NARW appear linked to changing food resources. While we know some large-scale movement patterns for NARW and a few SRW populations, we know little of mesoscale movements. For NPRW and some SRW populations, even broad-scale movements are poorly understood. In the face of climate change, can methodological advances help identify Eubalaena distributional and migratory responses? (4) Emergent diseases and the vulnerability of populations under stress: Marine mammals are vulnerable to infectious diseases, particularly when subjected to stressors such as fishing gear entanglements, acoustic disturbance, and prey shortages. New tools to assess large whale health include body condition imaging, viromes, microbiomes, as well as metabolic and stress hormones. Comparative analysis of the three Eubalaena spp. could identify causes of varying recovery. (5) Comparative synthesis and cumulative effects: The lack of a good analytical approach for cumulative effects is an urgent bio-statistical problem in conservation biology. Without such a framework every stressor is managed in isolation, limiting efficacy. We propose a comparative synthesis to inform future cumulative effect analyses and outline future research priorities to achieve these goals.Publisher PDFPeer reviewe

    Assessing climate risk and strengthening resilience for UK Higher Education Institutions

    Get PDF
    This working paper and accompanying case studies aim to support UK Higher Education Institutions (HEIs) to develop processes to assess their current and future climate risks, put in place plans to adapt to these risks, and identify opportunities to strengthen their resilience. This guidance summarises the latest evidence in line with national climate risk assessment and adaptation planning, and is intended to support decision makers, senior leaders, sustainability practitioners and risk experts within HEIs to undertake this urgent work. Potential activities are identified for key actors and communities including sector bodies and government. Although the focus is on HEIs, the recommendations and approaches covered are applicable to Further Education Institutions (FEIs), albeit at more local scales and with less onus on research considerations

    Salience and valence of appearance in a population with a visible difference of appearance: direct and moderated relationships with self-consciousness, anxiety and depression

    Get PDF
    Psychometric measures of appearance salience and valence, CARSAL and CARVAL, have been previously demonstrated to be key factors underpinning appearance related self-consciousness and negative affect in the general population. However, the extent to which the scales are appropriate for people with a visibly different appearance has not previously been reported. Neither has the moderating effect of appearance salience (CARSAL) on the relationship between appearance valence (CARVAL) and appearance self-consciousness, previously shown in a general population sample, been replicated with people who are visibly different. Twelve hundred and sixty five participants with a visible difference in either secondary care (n = 651) or the community (n = 614) provided data. Analysis confirmed the psychometric qualities of both CARSAL and CARVAL, and the conceptual independence of each scale. The scales also demonstrated independent and interdependent relationships with social anxiety and avoidance in relation to appearance, depression and anxiety. Appearance salience moderated the relationship with valence on these psychosocial measures. In summary, this paper corroborates the use of CARSAL and CARVAL with both visibly different and general adult populations for the measurement of appearance salience and valence

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations

    Distribution and Cconnection to other Plant-Communities of Genista radiata (L.) Scop in the South Tyrol (Italy)

    Get PDF
    Es werden die Genista radiata-Bestände an der Mendel in Südtirol (Italien) beschrieben und ihr Gesellschaftsanschluß diskutiert. Das Genisto-Festucetum alpestris Peer 83 besidelt steile südexponierte Kalkhänge der hochmontanen und subalpinen Stufe und ersetzt z.T. den Zwergstrauchgürtel mit Pinus mugo. Ähnlich zusammengesetzt ist das Genisto-Festucetum alpestris pinetosum Peer 83, das in den ¡lockeren Erika-Kiefernwäldern auftritt und bis in die tiefmontane Stufe hinunterreicht. Keinerlei syntaxonomische Bedeutung besitzt Genista radiata in den thermophilen Buschwaldgesellschaften, in denen die Pflanze lediglich eine Variante zum Orno-Ostryetum seslerietosum Peer 81 darstellt und speziell in der Saumzone anzutreffen ist. Auch in den Lärchenwiesen der Kammlagen kommt Genista radiata nur sporadisch vor. Sie ist hier mit dem Festucetum nigrescentis laricetosum subass. prov. verzahnt.Istražene su vegetacijske sastojine vrste Genista radiata u južnom Tirolu i razmatrana njihova fitocenološka pripadnost. Asocijacija Genisto-Festucetum alpestris Peer 83 nastava strme, južne vapnenačke obronke visokobrdskog i subalpskog pojasa. Subasocijacija Genisto-Festucetum alpestris pinetosum Peer 83 dolazi u rijetkim borovim šumama s crnjušom i spušta se do u niži brdski pojas. Termofilne niske šume, u kojima Genista radiata nema posebno sintaksonomsko značenje, označene su samo kao varijanta zajednice Orno-Ostryetum seslerietosum Peer 81. Genista radiata dolazi također na travnjacima s arišem, ali samo sporadično i to u mješavini sa zajednicom Festucetum nigrescentis laricetosnm subass. prov.The Genista radiata-communities of the Mendel in the South Tyrol (Italy) are described and their connection to other plant-communities is discussed. Genisto-Festucetum alpestris Peer 83 settles on steep, south- exposed colcareous slopes of high-mountain and subalpine altitudes and replaces particularly the dwarf-shrub-belt with Firms mugo. Similar contents aire found in Genisto-F estucetum alpestris pinetasum Peer 83, which occurs in undensed Erico-Pinetum-communities and reaches down to the low-mountain-altitude. In the thermophilic bush-communities, in which Genista radiata is found only as a variant of Orneto-Ostryetum seslerie- tosum (Peer 81), the plant has no syntaxonomic importance. Genista radiata especially is found in the edge-zone. In the grassland of the larch- communities of the ridges Genista radiata appears only sporadically. Here the plant appeals in Festucetum nigrescentis laricetosum subass. prov

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.Supplementary Figure S1: Filtered location data (black) and tag deployment locations (red) for each species. Maps are Lambert Azimuthal projections extending from 90° S to 20° S.Supplementary Table S1: Names and coordinates of the major study sites in the Southern Ocean and on the Antarctic Continent where tracking devices were deployed on the selected species (indicated by their 4-letter codes in the last column).Online Table 1: Description of fields (column names) in the metadata and data files.Supranational committees and organisations including the Scientific Committee on Antarctic Research Life Science Group and BirdLife International. National institutions and foundations, including but not limited to Argentina (Dirección Nacional del Antártico), Australia (Australian Antarctic program; Australian Research Council; Sea World Research and Rescue Foundation Inc., IMOS is a national collaborative research infrastructure, supported by the Australian Government and operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent), Belgium (Belgian Science Policy Office, EU Lifewatch ERIC), Brazil (Brazilian Antarctic Programme; Brazilian National Research Council (CNPq/MCTI) and CAPES), France (Agence Nationale de la Recherche; Centre National d’Etudes Spatiales; Centre National de la Recherche Scientifique; the French Foundation for Research on Biodiversity (FRB; www.fondationbiodiversite.fr) in the context of the CESAB project “RAATD”; Fondation Total; Institut Paul-Emile Victor; Programme Zone Atelier de Recherches sur l’Environnement Antarctique et Subantarctique; Terres Australes et Antarctiques Françaises), Germany (Deutsche Forschungsgemeinschaft, Hanse-Wissenschaftskolleg - Institute for Advanced Study), Italy (Italian National Antarctic Research Program; Ministry for Education University and Research), Japan (Japanese Antarctic Research Expedition; JSPS Kakenhi grant), Monaco (Fondation Prince Albert II de Monaco), New Zealand (Ministry for Primary Industries - BRAG; Pew Charitable Trusts), Norway (Norwegian Antarctic Research Expeditions; Norwegian Research Council), Portugal (Foundation for Science and Technology), South Africa (Department of Environmental Affairs; National Research Foundation; South African National Antarctic Programme), UK (Darwin Plus; Ecosystems Programme at the British Antarctic Survey; Natural Environment Research Council; WWF), and USA (U.S. AMLR Program of NOAA Fisheries; US Office of Polar Programs).http://www.nature.com/sdataam2021Mammal Research Institut
    corecore