4,939 research outputs found
Numerical computations on one-dimensional inverse scattering problems
An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines
Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations
Bell's theorem reveals contradictions between the predictions of quantum
mechanics and the EPR postulates for a pair of particles only in situations
involving imperfect statistical correlations. However, with three or more
particles, contradictions emerge even for perfect correlations. We describe an
experiment which can be realized in the laboratory, using four-photon entangled
states generated by parametric down-conversion, to demonstrate this
contradiction at the level of perfect correlations.Comment: publishe
Ferromagnetism and the Effect of Free Charge Carriers on Electric Polarization in Y_2NiMnO_6 Double Perovskite
The double perovskite Y_2NiMnO_6 displays ferromagnetic transition at Tc = 81
K. The ferromagnetic order at low temperature is confirmed by the saturation
value of magnetization (M_s) and also, validated by the refined ordered
magnetic moment values extracted from neutron powder diffraction data at 10 K.
This way, the dominant Mn4+ and Ni2+ cationic ordering is confirmed. The
cation-ordered P 21/n nuclear structure is revealed by neutron powder
diffraction studies at 300 and 10 K. Analysis of frequency dependent dielectric
constant and equivalent circuit analysis of impedance data takes into account
the bulk contribution to total dielectric constant. This reveals an anomaly
which coincides with the ferromagnetic transition temperature (T_c).
Pyrocurrent measurements register a current flow with onset near Tc and a peak
at 57 K that shifts with temperature ramp rate. The extrinsic nature of the
observed pyrocurrent is established by employing a special protocol
measurement. It is realized that the origin is due to re-orientation of
electric dipoles created by the free charge carriers and not by spontaneous
electric polarization at variance with recently reported magnetism-driven
ferroelectricity in this materialComment: Published in Physical Review
Persistence of RNAi-Mediated Knockdown in Drosophila Complicates Mosaic Analysis Yet Enables Highly Sensitive Lineage Tracing.
RNA interference (RNAi) has emerged as a powerful way of reducing gene function in Drosophila melanogaster tissues. By expressing synthetic short hairpin RNAs (shRNAs) using the Gal4/UAS system, knockdown is efficiently achieved in specific tissues or in clones of marked cells. Here we show that knockdown by shRNAs is so potent and persistent that even transient exposure of cells to shRNAs can reduce gene function in their descendants. When using the FLP-out Gal4 method, in some instances we observed unmarked "shadow RNAi" clones adjacent to Gal4-expressing clones, which may have resulted from brief Gal4 expression following recombination but prior to cell division. Similarly, Gal4 driver lines with dynamic expression patterns can generate shadow RNAi cells after their activity has ceased in those cells. Importantly, these effects can lead to erroneous conclusions regarding the cell autonomy of knockdown phenotypes. We have investigated the basis of this phenomenon and suggested experimental designs for eliminating ambiguities in interpretation. We have also exploited the persistence of shRNA-mediated knockdown to design a sensitive lineage-tracing method, i-TRACE, which is capable of detecting even low levels of past reporter expression. Using i-TRACE, we demonstrate transient infidelities in the expression of some cell-identity markers near compartment boundaries in the wing imaginal disc
Optical vernier technique for in-situ measurement of the length of long Fabry-Perot cavities
We propose a method for in-situ measurement of the length of kilometer size
Fabry-Perot cavities in laser gravitational wave detectors. The method is based
on the vernier, which occurs naturally when the laser incident on the cavity
has a sideband. By changing the length of the cavity over several wavelengths
we obtain a set of carrier resonances alternating with sideband resonances.
From the measurement of the separation between the carrier and a sideband
resonance we determine the length of the cavity. We apply the technique to the
measurement of the length of a Fabry-Perot cavity in the Caltech 40m
Interferometer and discuss the accuracy of the technique.Comment: LaTeX 2e, 12 pages, 4 figure
Penetration depth of low-coherence enhanced backscattered light in sub-diffusion regime
The mechanisms of photon propagation in random media in the diffusive
multiple scattering regime have been previously studied using diffusion
approximation. However, similar understanding in the low-order (sub-diffusion)
scattering regime is not complete due to difficulties in tracking photons that
undergo very few scatterings events. Recent developments in low-coherence
enhanced backscattering (LEBS) overcome these difficulties and enable probing
photons that travel very short distances and undergo only a few scattering
events. In LEBS, enhanced backscattering is observed under illumination with
spatial coherence length L_sc less than the scattering mean free path l_s. In
order to understand the mechanisms of photon propagation in LEBS in the
subdiffusion regime, it is imperative to develop analytical and numerical
models that describe the statistical properties of photon trajectories. Here we
derive the probability distribution of penetration depth of LEBS photons and
report Monte Carlo numerical simulations to support our analytical results. Our
results demonstrate that, surprisingly, the transport of photons that undergo
low-order scattering events has only weak dependence on the optical properties
of the medium (l_s and anisotropy factor g) and strong dependence on the
spatial coherence length of illumination, L_sc, relative to those in the
diffusion regime. More importantly, these low order scattering photons
typically penetrate less than l_s into the medium due to low spatial coherence
length of illumination and their penetration depth is proportional to the
one-third power of the coherence volume (i.e. [l_s \pi L_sc^2 ]^1/3).Comment: 32 pages(including 7 figures), modified version to appear in Phys.
Rev.
- …
