177 research outputs found

    Thioredoxin: An Antioxidant, A Therapeutic Target and A Possible Biomarker

    Get PDF
    Study by Haga et al. on the utility of neonatal serum thioredoxin-1 (TRX-1) levels as a biomarker of bronchopulmonary dysplasia (BPD)/ retinopathy of prematurity (ROP) is the first of its kind. A biomarker is considered to enable the detection of a pathological condition or its severity and ideally, should have the capacity to be detected in the pre-disease state or during the diseased state. Premature infants who develop BPD are exposed to supplemental O2 and show marked evidence of oxidant stress as suggested by elevated glutathione disulfide (GSSG) concentrations.1 Upon preterm delivery, an infant breathing even atmospheric oxygen of 21% undergoes a sudden increase in lung O2 levels which perturbs the hypoxia-mediated signaling necessary for lung development in utero. Oxidative stress occurs in cells as a result of imbalance between the production and accumulation of reactive oxygen species (ROS).2 ROS are generated in cells routinely as by-products of oxygen metabolism. However, environmental stressors such as ionizing radiation, pollutants, heavy metals and exposure to hyperoxia greatly increase ROS production. Though ROS have physiological roles such as cell signaling, excessive accumulation results in oxidative stress and cell damage. Antioxidant systems such as superoxide dismutase, glutathione (GSH), glutaredoxin, heme oxygenase and thioredoxin (TRX) systems protect cells from the pathological effects of ROS.3 A deficiency in mounting efficient antioxidant responses to hyperoxia leads to increased susceptibility to oxidant injury. This is a problem seen in preterm infants who are more susceptible to the effects of oxidant injury due to developmental deficits in antioxidants.4 In this context, an understanding of the antioxidant systems is critical, and one such important system is thioredoxin

    Postnatal Corticosteroid Therapy in Bronchopulmonary Dysplasia - Why Animal Studies Disagree with Clinical Trials?

    Get PDF
    Abstract: The systematic review and meta-analysis of newborn animal models by Irene Lok et al. is the first to extensively summarize the literature regarding postnatal systemic corticosteroid use on lung development of newborn rodent models. The meta-analysis showed that the use of postnatal corticosteroids resulted in a reduction in body weight along with persistent alveolar simplification. The most frequently used corticosteroid was dexamethasone. Corticosteroids have been extensively used in clinical trials in preterm newborns. Trials using early systemic administration of corticosteroids reduced the rate of BPD or mortality with no increase in the rates of cerebral palsy. Use of late systemic corticosteroids (administered \u3e7 days after birth) also reduced the rate of BPD, mortality, and combined outcome of mortality or BPD. Late systemic corticosteroids showed no impact on the rates of neurodevelopmental outcomes in later childhood. It is important to note that later stages of inflammation leading to a more severe form of BPD continues to be a problem with no clear therapy in sight. The authors made a critical point in their paper – the negative effects of steroids were greater in the normal lung control animals than in the injured. This conveys caution in using steroids in a prophylactic manner. Impact: Use of systemic corticosteroids in clinical trials have shown good response in preterm neonates evidenced by reduced rate of bronchopulmonary dysplasia. Rodent models have not shown a similar beneficial response. Use of systemic corticosteroids have caused greater arrest of lung development in rodent models with normal lungs compared to those with lung damage

    Coronin 1B Regulates S1P-Induced Human Lung Endothelial Cell Chemotaxis: Role of PLD2, Protein Kinase C and Rac1 Signal Transduction

    Get PDF
    Coronins are a highly conserved family of actin binding proteins that regulate actin-dependent processes such as cell motility and endocytosis. We found that treatment of human pulmonary artery endothelial cells (HPAECs) with the bioactive lipid, sphingosine-1-phosphate (S1P) rapidly stimulates coronin 1B translocation to lamellipodia at the cell leading edge, which is required for S1P-induced chemotaxis. Further, S1P-induced chemotaxis of HPAECs was attenuated by pretreatment with small interfering RNA (siRNA) targeting coronin 1B (∼36%), PLD2 (∼45%) or Rac1 (∼50%) compared to scrambled siRNA controls. Down regulation PLD2 expression by siRNA also attenuated S1P-induced coronin 1B translocation to the leading edge of the cell periphery while PLD1 silencing had no effect. Also, S1P-induced coronin 1B redistribution to cell periphery and chemotaxis was attenuated by inhibition of Rac1 and over-expression of dominant negative PKC δ, ε and ζ isoforms in HPAECs. These results demonstrate that S1P activation of PLD2, PKC and Rac1 is part of the signaling cascade that regulates coronin 1B translocation to the cell periphery and the ensuing cell chemotaxis

    Novel Peptide Nanoparticle Biased Antagonist of CCR3 Blocks Eosinophil Recruitment and Airway Hyperresponsiveness

    Get PDF
    Background—Chemokine signaling through CCR3 is a key regulatory pathway for eosinophil recruitment into tissues associated with allergic inflammation and asthma. To date, none of the CCR3 antagonists have shown efficacy in clinical trials. One reason may be their unbiased mode of inhibition that prevents receptor internalization, leading to drug tolerance. Objective—We sought to develop a novel peptide nanoparticle CCR3 inhibitor (R321) with a biased mode of inhibition that would block G-protein signaling, but enable or promote receptor internalization. Methods—Self-assembly of R321 peptide into nanoparticles and peptide binding to CCR3 were analyzed by dynamic light scattering and NMR. Inhibitory activity on CCR3 signaling was assessed in vitro using flow cytometry, confocal microscopy, and western blot analysis in a CCR3+ eosinophil cell line and blood eosinophils. In vivo effects of R321 were assessed using a triple allergen mouse asthma model. Results—R321 self-assembles into nanoparticles and binds directly to CCR3, altering receptor function. IC50 values for eotaxin-induced chemotaxis of blood eosinophils are in the low nanomolar range. R321 inhibits only the early phase of ERK1/2 activation and not the late phase generally associated with β-arrestin recruitment and receptor endocytosis, promoting CCR3 internalization and degradation. In vivo, R321 effectively blocks eosinophil recruitment into the lungs and airways and prevents airway hyperresponsiveness in a mouse eosinophilic asthma model. Conclusions—R321 is a potent and selective antagonist of the CCR3 signaling cascade. Inhibition through a biased mode of antagonism may hold significant therapeutic promise by eluding the formation of drug tolerance

    Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies

    Full text link
    Abstract Background Bronchopulmonary dysplasia (BPD) is the result of a complex process in which several prenatal and/or postnatal factors interfere with lower respiratory tract development, leading to a severe, lifelong disease. In this review, what is presently known regarding BPD pathogenesis, its impact on long-term pulmonary morbidity and mortality and the available preventive and therapeutic strategies are discussed. Main body Bronchopulmonary dysplasia is associated with persistent lung impairment later in life, significantly impacting health services because subjects with BPD have, in most cases, frequent respiratory diseases and reductions in quality of life and life expectancy. Prematurity per se is associated with an increased risk of long-term lung problems. However, in children with BPD, impairment of pulmonary structures and function is even greater, although the characterization of long-term outcomes of BPD is difficult because the adults presently available to study have received outdated treatment. Prenatal and postnatal preventive measures are extremely important to reduce the risk of BPD. Conclusion Bronchopulmonary dysplasia is a respiratory condition that presently occurs in preterm neonates and can lead to chronic respiratory problems. Although knowledge about BPD pathogenesis has significantly increased in recent years, not all of the mechanisms that lead to lung damage are completely understood, which explains why therapeutic approaches that are theoretically effective have been only partly satisfactory or useless and, in some cases, potentially negative. However, prevention of prematurity, systematic use of nonaggressive ventilator measures, avoiding supraphysiologic oxygen exposure and administration of surfactant, caffeine and vitamin A can significantly reduce the risk of BPD development. Cell therapy is the most fascinating new measure to address the lung damage due to BPD. It is desirable that ongoing studies yield positive results to definitively solve a major clinical, social and economic problem

    Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists

    Get PDF

    Trisomy 14 with diaphragmatic hernia: A case report

    No full text

    PF543 asthma S1 AJP Lung Supplementary FilesL-00269-2023R1

    No full text
    Supplement file 1</p
    corecore