144 research outputs found
Local IL-17 Production Exerts a Protective Role in Murine Experimental Glomerulonephritis
IL-17 is a pro-inflammatory cytokine implicated in the pathogenesis of glomerulonephritis and IL-17 deficient mice are protected from nephrotoxic nephritis. However, a regulatory role for IL-17 has recently emerged. We describe a novel protective function for IL-17 in the kidney. Bone marrow chimeras were created using wild-type and IL-17 deficient mice and nephrotoxic nephritis was induced. IL-17 deficient hosts transplanted with wild-type bone marrow had worse disease by all indices compared to wild-type to wild-type bone marrow transplants (serum urea p<0.05; glomerular thrombosis p<0.05; tubular damage p<0.01), suggesting that in wild-type mice, IL-17 production by renal cells resistant to radiation is protective. IL-17 deficient mice transplanted with wild-type bone marrow also had a comparatively altered renal phenotype, with significant differences in renal cytokines (IL-10 p<0.01; IL-1β p<0.001; IL-23 p<0.01), and macrophage phenotype (expression of mannose receptor p<0.05; inducible nitric oxide synthase p<0.001). Finally we show that renal mast cells are resistant to radiation and produce IL-17, suggesting they are potential local mediators of disease protection. This is a novel role for intrinsic cells in the kidney that are radio-resistant and produce IL-17 to mediate protection in nephrotoxic nephritis. This has clinical significance as IL-17 blockade is being trialled as a therapeutic strategy in some autoimmune diseases
Analyzing and Mapping Sweat Metabolomics by High-Resolution NMR Spectroscopy
The content of human sweat is studied by high-resolution NMR, and the majority of organic components most often found in sweat of conditionally healthy people are identified. Original and simple tools are designed for sweat sampling from different areas of human body. The minimal surface area needed for sampling is in the range of 50–100 cm2. On all the surface parts of the human body examined in this work, the main constituents forming a sweat metabolic profile are lactate, glycerol, pyruvate, and serine. The only exception is the sole of the foot (planta pedis), where trace amounts of glycerol are found. An attempt is made to explain the presence of specified metabolites and their possible origin
The effect on endothelial function of vitamin C during methionine induced hyperhomocysteinaemia
BACKGROUND: Manipulation of total homocysteine concentration with oral methionine is associated with impairment of endothelial-dependent vasodilation. This may be caused by increased oxidative stress. Vitamin C is an aqueous phase antioxidant vitamin and free radical scavenger. We hypothesised that if the impairment of endothelial function related to experimental hyperhomocysteinaemia was free radically mediated then co-administration of vitamin C should prevent this. METHODS: Ten healthy adults took part in this crossover study. Endothelial function was determined by measuring forearm blood flow (FBF) in response to intra-arterial infusion of acetylcholine (endothelial-dependent) and sodium nitroprusside (endothelial-independent). Subjects received methionine (100 mg/Kg) plus placebo tablets, methionine plus vitamin C (2 g orally) or placebo drink plus placebo tablets. Study drugs were administered at 9 am on each study date, a minimum of two weeks passed between each study. Homocysteine (tHcy) concentration was determined at baseline and after 4 hours. Endothelial function was determined at 4 hours. Responses to the vasoactive substances are expressed as the area under the curve of change in FBF from baseline. Data are mean plus 95% Confidence Intervals. RESULTS: Following oral methionine tHcy concentration increased significantly versus placebo. At this time endothelial-dependent responses were significantly reduced compared to placebo (31.2 units [22.1-40.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo). Endothelial-independent responses were unchanged. Co-administration of vitamin C did not alter the increase in homocysteine or prevent the impairment of endothelial-dependent responses (31.4 [19.5-43.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo) CONCLUSIONS: This study demonstrates that methionine increased tHcy with impairment of the endothelial-dependent vasomotor responses. Administration of vitamin C did not prevent this impairment and our results do not support the hypothesis that the endothelial impairment is mediated by adverse oxidative stress
A Meta-Analysis and Genome-Wide Association Study of Platelet Count and Mean Platelet Volume in African Americans
Several genetic variants associated with platelet count and mean platelet volume
(MPV) were recently reported in people of European ancestry. In this
meta-analysis of 7 genome-wide association studies (GWAS) enrolling African
Americans, our aim was to identify novel genetic variants associated with
platelet count and MPV. For all cohorts, GWAS analysis was performed using
additive models after adjusting for age, sex, and population stratification. For
both platelet phenotypes, meta-analyses were conducted using inverse-variance
weighted fixed-effect models. Platelet aggregation assays in whole blood were
performed in the participants of the GeneSTAR cohort. Genetic variants in ten
independent regions were associated with platelet count
(N = 16,388) with p<5×10−8 of
which 5 have not been associated with platelet count in previous GWAS. The novel
genetic variants associated with platelet count were in the following regions
(the most significant SNP, closest gene, and p-value): 6p22 (rs12526480,
LRRC16A, p = 9.1×10−9), 7q11
(rs13236689, CD36, p = 2.8×10−9),
10q21 (rs7896518, JMJD1C,
p = 2.3×10−12), 11q13 (rs477895,
BAD, p = 4.9×10−8), and 20q13
(rs151361, SLMO2, p = 9.4×10−9).
Three of these loci (10q21, 11q13, and 20q13) were replicated in European
Americans (N = 14,909) and one (11q13) in Hispanic
Americans (N = 3,462). For MPV
(N = 4,531), genetic variants in 3 regions were significant
at p<5×10−8, two of which were also associated with
platelet count. Previously reported regions that were also significant in this
study were 6p21, 6q23, 7q22, 12q24, and 19p13 for platelet count and 7q22,
17q11, and 19p13 for MPV. The most significant SNP in 1 region was also
associated with ADP-induced maximal platelet aggregation in whole blood (12q24).
Thus through a meta-analysis of GWAS enrolling African Americans, we have
identified 5 novel regions associated with platelet count of which 3 were
replicated in other ethnic groups. In addition, we also found one region
associated with platelet aggregation that may play a potential role in
atherothrombosis
Immunoprotectivity of HLA-A2 CTL Peptides Derived from Respiratory Syncytial Virus Fusion Protein in HLA-A2 Transgenic Mouse
Identification of HLA-restricted CD8+ T cell epitopes is important to study RSV-induced immunity and illness. We algorithmically analyzed the sequence of the fusion protein (F) of respiratory syncytial virus (RSV) and generated synthetic peptides that can potentially bind to HLA-A*0201. Four out of the twenty-five 9-mer peptides tested: peptides 3 (F33–41), 13 (F214–222), 14 (F273–281), and 23 (F559–567), were found to bind to HLA-A*0201 with moderate to high affinity and were capable of inducing IFN-γ and IL-2 secretion in lymphocytes from HLA-A*0201 transgenic (HLA-Tg) mice pre-immunized with RSV or recombinant adenovirus expressing RSV F. HLA-Tg mice were immunized with these four peptides and were found to induce both Th1 and CD8+ T cell responses in in vitro secondary recall. Effector responses induced by these peptides were observed to confer differential protection against live RSV challenge. These peptides also caused better recovery of body weight loss induced by RSV. A significant reduction of lung viral load was observed in mice immunized with peptide 23, which appeared to enhance the levels of inflammatory chemokines (CCL17, CCL22, and IL-18) but did not increase eosinophil infiltration in the lungs. Whereas, significant reduction of infiltrated eosinophils induced by RSV infection was found in mice pre-immunized with peptide 13. Our results suggest that HLA-A2-restricted epitopes of RSV F protein could be useful for the development of epitope-based RSV vaccine
Clustering of physical inactivity and low fruit and vegetables intake and associated factors in young adults
Screening for a low-cost Haematococcus pluvialis medium reveals an unexpected impact of a low N:P ratio on vegetative growth
Haematococcus pluvialis is the current better source of natural astaxanthin, a high-value carotenoid.
Traditionally, the production process of astaxanthin by this algae is achieved by a two-stage system:
during the first stage, vegetative “green” cells are produced and then converted, in the second stage, into
cysts that accumulate astaxanthin. In this work, a medium screening strategy based on the mixing of a
3-component hydroponic fertilizer was applied to identify a new formulation optimized for the vegetative
stage. A maximal and high cell density of 2 x 106 cells mL−1 was obtained in a medium containing
a high level of phosphate relative to nitrate, resulting in a N:P ratio much lower than commonly used
media for H. pluvialis. In this medium, cells remained at the vegetative and motile stage during a
prolonged period of time. Both high cell density culture and motile stage persistence was proved to
be related to the N:P feature of this medium. We conclude that the macrozoid stage of H. pluvialis
is favored under high-P and low-N supply and that low-cost hydroponic fertilizers can be successfully
used for achieving high density cultures of vegetative cells of H. pluvialis.BIOVAMA
- …
