3,281 research outputs found

    Radius Dependent Luminosity Evolution of Blue Galaxies in GOODS-N

    Get PDF
    We examine the radius-luminosity (R-L) relation for blue galaxies in the Team Keck Redshift Survey (TKRS) of GOODS-N. We compare with a volume-limited, Sloan Digital Sky Survey sample and find that the R-L relation has evolved to lower surface brightness since z=1. Based on the detection limits of GOODS this can not be explained by incompleteness in low surface-brightness galaxies. Number density arguments rule out a pure radius evolution. It can be explained by a radius dependent decline in B-band luminosity with time. Assuming a linear shift in M_B with z, we use a maximum likelihood method to quantify the evolution. Under these assumptions, large (R_{1/2} > 5 kpc), and intermediate sized (3 < R_{1/2} < 5 kpc) galaxies, have experienced Delta M_B =1.53 (-0.10,+0.13) and 1.65 (-0.18, +0.08) magnitudes of dimming since z=1. A simple exponential decline in star formation with an e-folding time of 3 Gyr can result in this amount of dimming. Meanwhile, small galaxies, or some subset thereof, have experienced more evolution, 2.55 (+/- 0.38) magnitudes. This factor of ten decline in luminosity can be explained by sub-samples of starbursting dwarf systems that fade rapidly, coupled with a decline in burst strength or frequency. Samples of bursting, luminous, blue, compact galaxies at intermediate redshifts have been identified by various previous studies. If there has been some growth in galaxy size with time, these measurements are upper limits on luminosity fading.Comment: 34 Total pages, 15 Written pages, 19 pages of Data Table, 13 Figures, accepted for publication in Ap

    Interaction between U/UO2 bilayers and hydrogen studied by in-situ X-ray diffraction

    Get PDF
    This paper reports experiments investigating the reaction of H2_{2} with uranium metal-oxide bilayers. The bilayers consist of \leq 100 nm of epitaxial α\alpha-U (grown on a Nb buffer deposited on sapphire) with a UO2_{2} overlayer of thicknesses of between 20 and 80 nm. The oxides were made either by depositing via reactive magnetron sputtering, or allowing the uranium metal to oxidise in air at room temperature. The bilayers were exposed to hydrogen, with sample temperatures between 80 and 200 C, and monitored via in-situ x-ray diffraction and complimentary experiments conducted using Scanning Transmission Electron Microscopy - Electron Energy Loss Spectroscopy (STEM-EELS). Small partial pressures of H2_{2} caused rapid consumption of the U metal and lead to changes in the intensity and position of the diffraction peaks from both the UO2_{2} overlayers and the U metal. There is an orientational dependence in the rate of U consumption. From changes in the lattice parameter we deduce that hydrogen enters both the oxide and metal layers, contracting the oxide and expanding the metal. The air-grown oxide overlayers appear to hinder the H2_{2}-reaction up to a threshold dose, but then on heating from 80 to 140 C the consumption is more rapid than for the as-deposited overlayers. STEM-EELS establishes that the U-hydride layer lies at the oxide-metal interface, and that the initial formation is at defects or grain boundaries, and involves the formation of amorphous and/or nanocrystalline UH3_{3}. This explains why no diffraction peaks from UH3_{3} are observed. {\textcopyright British Crown Owned Copyright 2017/AWE}Comment: Submitted for peer revie

    Continuation method for nonlinear complementarity problems via normal maps

    Get PDF
    Cataloged from PDF version of article.In a recent paper by Chen and Mangasarian (C. Chen, O.L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Computational Optimization and Applications 2 (1996), 97±138) a class of parametric smoothing functions has been proposed to approximate the plus function present in many optimization and complementarity related problems. This paper uses these smoothing functions to approximate the normal map formulation of nonlinear complementarity problems (NCP). Properties of the smoothing function are investigated based on the density functions that de®nes the smooth approximations. A continuation method is then proposed to solve the NCPs arising from the approximations. Su cient conditions are provided to guarantee the boundedness of the solution trajectory. Furthermore, the structure of the subproblems arising in the proposed continuation method is analyzed for di erent choices of smoothing functions. Computational results of the continuation method are reported. Ó 1999 Elsevier Science B.V. All rights reserved

    Further evidence for linearly-dispersive Cooper pairs

    Full text link
    A recent Bose-Einstein condensation (BEC) model of several cuprate superconductors is based on bosonic Cooper pairs (CPs) moving in 3D with a quadratic energy-momentum (dispersion) relation. The 3D BEC condensate-fraction vs. temperature (T/Tc, where Tc is the BEC transition temperature) formula poorly fits penetration-depth data for two cuprates in the range (1/2, 1]. We show how these fits are dramatically improved assuming cuprates to be quasi-2D, and how equally good fits obtain for conventional 3D and quasi-1D nanotube superconducting data, provided the correct CP dispersion is assumed in BEC at their assumed corresponding dimensionalities. This is offered as additional concrete empirical evidence for linearly-dispersive pairs in another recent BEC scenario of superconductors within which a BCS condensate turns out to be a very special case.Comment: 9 pages, 1 figur

    Crystalline Silicate Emission in the Protostellar Binary Serpens--SVS20

    Full text link
    We present spatially resolved mid-infrared spectroscopy of the class I/flat-spectrum protostellar binary system SVS20 in the Serpens cloud core. The spectra were obtained with the mid-infrared instrument T-ReCS on Gemini-South. SVS20-South, the more luminous of the two sources, exhibits a mid-infrared emission spectrum peaking near 11.3 \micron, while SVS20-North exhibits a shallow amorphous silicate absorption spectrum with a peak optical depth of τ0.3\tau \sim 0.3. After removal of the the line-of-sight extinction by the molecular common envelope, the ``protostar-only'' spectra are found to be dominated by strong amorphous olivine emission peaking near 10 \micron. We also find evidence for emission from crystalline forsterite and enstatite associated with both SVS20-S and SVS20-N. The presence of crystalline silicate in such a young binary system indicates that the grain processing found in more evolved HAeBe and T Tauri pre-main sequence stars likely begins at a relatively young evolutionary stage, while mass accretion is still ongoing.Comment: Accepted for publication by The Astrophysical Journa

    Explicit Action Switching Interferes with the Context-Specificity of Motor Memories in Older Adults

    Get PDF
    Healthy aging impairs the ability to adapt movements to novel situations and to switch choices according to the context in cognitive tasks, indicating resistance to changes in motor and cognitive behaviors. Here we examined if this lack of “flexibility” in old subjects observed in motor and cognitive domains were related. To this end, we evaluated subjects' performance in a motor task that required switching walking patterns and its relation to performance in a cognitive switching task. Specifically, a group of old (>73 years old) and young subjects learned a new locomotor pattern on a split-belt treadmill, which drives the legs at different speeds. In both groups, we assessed the ability to disengage the walking pattern learned on the treadmill when walking overground. Then, we determined if this motor context-specificity was related to subjects' cognitive ability to switch actions in a set-shift task. Motor and cognitive behaviors were tested twice on separate visits to determine if age-related differences were maintained with exposure. Consistent with previous studies, we found that old adults adapted slower and had deficits in retention. Most importantly, we found that older subjects could not switch locomotor patterns when transitioning across walking contexts. Interestingly, cognitive switching performance was inversely related to subjects' ability to switch walking patterns. Thus, cognitive mediated switching interfered with locomotor switching. These findings were maintained across testing sessions. Our results suggest that distinct neural substrates mediate motor and cognitive action selection, and that these processes interfere with each other as we age

    Bi2Te1.6S1.4 - a Topological Insulator in the Tetradymite Family

    Full text link
    We describe the crystal growth, crystal structure, and basic electrical properties of Bi2Te1.6S1.4, which incorporates both S and Te in its Tetradymite quintuple layers in the motif -[Te0.8S0.2]-Bi-S-Bi-[Te0.8S0.2]-. This material differs from other Tetradymites studied as topological insulators due to the increased ionic character that arises from its significant S content. Bi2Te1.6S1.4 forms high quality crystals from the melt and is the S-rich limit of the ternary Bi-Te-S {\gamma}-Tetradymite phase at the melting point. The native material is n-type with a low resistivity; Sb substitution, with adjustment of the Te to S ratio, results in a crossover to p-type and resistive behavior at low temperatures. Angle resolved photoemission study shows that topological surface states are present, with the Dirac point more exposed than it is in Bi2Te3 and similar to that seen in Bi2Te2Se. Single crystal structure determination indicates that the S in the outer chalcogen layers is closer to the Bi than the Te, and therefore that the layers supporting the surface states are corrugated on the atomic scale.Comment: To be published in Physical Review B Rapid Communications 16 douuble spaced pages. 4 figures 1 tabl

    Analysis of blink dynamics in patients with blepharoptosis

    Get PDF
    Owing to the rapid movements of the human upper eyelid, a high-speed camera was used to record and characterize voluntary blinking and the blink dynamics of blepharoptosis patients were compared to a control group. Twenty-six blepharoptosis patients prior to surgery and 45 control subjects were studied and the vertical height of the palpebral aperture (PA) was measured manually at 2 ms intervals during each blink cycle. The PA and blinking speed were plotted with respect to time and a predictive model was generated. The blink dynamic was analysed in closing and opening phases, and revealed a reduced speed of the initial opening phase in ptotic patients, suggesting intrinsic muscle function change in ptosis pathogenesis. The PA versus time curve for each subject was reconstructed using custom-built parameters; however, there were significant differences between the two groups. Those parameters used included the rate of closure, the delay between opening and closing, rate of initial opening, rate of slow opening (nonlinear function) and the 'switch point' between those two rates of opening. The model was tested against a new group of subjects and was able to discriminate ptosis patients from controls with 80% accuracy

    The DEEP2 Galaxy Redshift Survey: Mean Ages and Metallicities of Red Field Galaxies at z ~ 0.9 from Stacked Keck/DEIMOS Spectra

    Get PDF
    As part of the DEEP2 galaxy redshift survey, we analyze absorption line strengths in stacked Keck/DEIMOS spectra of red field galaxies with weak to no emission lines, at redshifts 0.7 <= z <= 1. Comparison with models of stellar population synthesis shows that red galaxies at z ~ 0.9 have mean luminosity-weighted ages of the order of only 1 Gyr and at least solar metallicities. This result cannot be reconciled with a scenario where all stars evolved passively after forming at very high z. Rather, a significant fraction of stars can be no more than 1 Gyr old, which means that star formation continued to at least z ~ 1.2. Furthermore, a comparison of these distant galaxies with a local SDSS sample, using stellar populations synthesis models, shows that the drop in the equivalent width of Hdelta from z ~ 0.9 to 0.1 is less than predicted by passively evolving models. This admits of two interpretations: either each individual galaxy experiences continuing low-level star formation, or the red-sequence galaxy population from z ~ 0.9 to 0.1 is continually being added to by new galaxies with younger stars.Comment: A few typos were corrected and numbers in Table 1 were revise
    corecore