1,295 research outputs found

    Study of Digital Competence of the Students and Teachers in Ukraine

    Get PDF
    Professional fulfillment of the personality at the conditions of the digital economy requires the high level of digital competency. One of the ways to develop these competencies is education. However, to provide the implementation of digital education at a high level, the digital competency of the teachers and students is a must. This paper presents explanations on the level determination of the digital competencies for teachers and students in Ukraine according to the DigComp recommendations. We tried to identify the main factors that reflect the degree of readiness teachers and students for digital education based on their self-evaluation. We also attempted to estimate the level of digital competencies based on the analysis of Case-Studies execution results. The complex analysis let us assess the connection between respondents’ self-evaluation and their real competencies. Here we provide a methodology and a model of level competencies determination by means of a survey, expert case rating and the results of the statistical analysis. On the basis of the obtained results, this paper suggests further research prospects and recommendations on the digital competency development in educational institutions in Ukraine

    A Recurrent Neural Network Survival Model: Predicting Web User Return Time

    Full text link
    The size of a website's active user base directly affects its value. Thus, it is important to monitor and influence a user's likelihood to return to a site. Essential to this is predicting when a user will return. Current state of the art approaches to solve this problem come in two flavors: (1) Recurrent Neural Network (RNN) based solutions and (2) survival analysis methods. We observe that both techniques are severely limited when applied to this problem. Survival models can only incorporate aggregate representations of users instead of automatically learning a representation directly from a raw time series of user actions. RNNs can automatically learn features, but can not be directly trained with examples of non-returning users who have no target value for their return time. We develop a novel RNN survival model that removes the limitations of the state of the art methods. We demonstrate that this model can successfully be applied to return time prediction on a large e-commerce dataset with a superior ability to discriminate between returning and non-returning users than either method applied in isolation.Comment: Accepted into ECML PKDD 2018; 8 figures and 1 tabl

    Exposure-Response Estimates for Diesel Engine Exhaust and Lung Cancer Mortality Based on Data from Three Occupational Cohorts

    Get PDF
    Background: Diesel engine exhaust (DEE) has recently been classified as a known human carcinogen. Objective: We derived a meta-exposure–response curve (ERC) for DEE and lung cancer mortality and estimated lifetime excess risks (ELRs) of lung cancer mortality based on assumed occupational and environmental exposure scenarios. Methods: We conducted a meta-regression of lung cancer mortality and cumulative exposure to elemental carbon (EC), a proxy measure of DEE, based on relative risk (RR) estimates reported by three large occupational cohort studies (including two studies of workers in the trucking industry and one study of miners). Based on the derived risk function, we calculated ELRs for several lifetime occupational and environmental exposure scenarios and also calculated the fractions of annual lung cancer deaths attributable to DEE. Results: We estimated a lnRR of 0.00098 (95% CI: 0.00055, 0.0014) for lung cancer mortality with each 1-μg/m3-year increase in cumulative EC based on a linear meta-regression model. Corresponding lnRRs for the individual studies ranged from 0.00061 to 0.0012. Estimated numbers of excess lung cancer deaths through 80 years of age for lifetime occupational exposures of 1, 10, and 25 μg/m3 EC were 17, 200, and 689 per 10,000, respectively. For lifetime environmental exposure to 0.8 μg/m3 EC, we estimated 21 excess lung cancer deaths per 10,000. Based on broad assumptions regarding past occupational and environmental exposures, we estimated that approximately 6% of annual lung cancer deaths may be due to DEE exposure. Conclusions: Combined data from three U.S. occupational cohort studies suggest that DEE at levels common in the workplace and in outdoor air appear to pose substantial excess lifetime risks of lung cancer, above the usually acceptable limits in the United States and Europe, which are generally set at 1/1,000 and 1/100,000 based on lifetime exposure for the occupational and general population, respectively. Citation: Vermeulen R, Silverman DT, Garshick E, Vlaanderen J, Portengen L, Steenland K. 2014. Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ Health Perspect 122:172–177; http://dx.doi.org/10.1289/ehp.130688

    The melanoma-specific graded prognostic assessment does not adequately discriminate prognosis in a modern population with brain metastases from malignant melanoma

    Get PDF
    The melanoma-specific graded prognostic assessment (msGPA) assigns patients with brain metastases from malignant melanoma to 1 of 4 prognostic groups. It was largely derived using clinical data from patients treated in the era that preceded the development of newer therapies such as BRAF, MEK and immune checkpoint inhibitors. Therefore, its current relevance to patients diagnosed with brain metastases from malignant melanoma is unclear. This study is an external validation of the msGPA in two temporally distinct British populations.Performance of the msGPA was assessed in Cohort I (1997-2008, n=231) and Cohort II (2008-2013, n=162) using Kaplan-Meier methods and Harrell's c-index of concordance. Cox regression was used to explore additional factors that may have prognostic relevance.The msGPA does not perform well as a prognostic score outside of the derivation cohort, with suboptimal statistical calibration and discrimination, particularly in those patients with an intermediate prognosis. Extra-cerebral metastases, leptomeningeal disease, age and potential use of novel targeted agents after brain metastases are diagnosed, should be incorporated into future prognostic models.An improved prognostic score is required to underpin high-quality randomised controlled trials in an area with a wide disparity in clinical care

    A family history of breast cancer will not predict female early onset breast cancer in a population-based setting

    Get PDF
    ABSTRACT: BACKGROUND: An increased risk of breast cancer for relatives of breast cancer patients has been demonstrated in many studies, and having a relative diagnosed with breast cancer at an early age is an indication for breast cancer screening. This indication has been derived from estimates based on data from cancer-prone families or from BRCA1/2 mutation families, and might be biased because BRCA1/2 mutations explain only a small proportion of the familial clustering of breast cancer. The aim of the current study was to determine the predictive value of a family history of cancer with regard to early onset of female breast cancer in a population based setting. METHODS: An unselected sample of 1,987 women with and without breast cancer was studied with regard to the age of diagnosis of breast cancer. RESULTS: The risk of early-onset breast cancer was increased when there were: (1) at least 2 cases of female breast cancer in first-degree relatives (yes/no; HR at age 30: 3.09; 95% CI: 128-7.44), (2) at least 2 cases of female breast cancer in first or second-degree relatives under the age of 50 (yes/no; HR at age 30: 3.36; 95% CI: 1.12-10.08), (3) at least 1 case of female breast cancer under the age of 40 in a first- or second-degree relative (yes/no; HR at age 30: 2.06; 95% CI: 0.83-5.12) and (4) any case of bilateral breast cancer (yes/no; HR at age 30: 3.47; 95%: 1.33-9.05). The positive predictive value of having 2 or more of these characteristics was 13% for breast cancer before the age of 70, 11% for breast cancer before the age of 50, and 1% for breast cancer before the age of 30. CONCLUSION: Applying family history related criteria in an unselected population could result in the screening of many women who will not develop breast cancer at an early age

    Variable selection under multiple imputation using the bootstrap in a prognostic study

    Get PDF
    Background: Missing data is a challenging problem in many prognostic studies. Multiple imputation (MI) accounts for imputation uncertainty that allows for adequate statistical testing. We developed and tested a methodology combining MI with bootstrapping techniques for studying prognostic variable selection. Method: In our prospective cohort study we merged data from three different randomized controlled trials (RCTs) to assess prognostic variables for chronicity of low back pain. Among the outcome and prognostic variables data were missing in the range of 0 and 48.1%. We used four methods to investigate the influence of respectively sampling and imputation variation: MI only, bootstrap only, and two methods that combine MI and bootstrapping. Variables were selected based on the inclusion frequency of each prognostic variable, i.e. the proportion of times that the variable appeared in the model. The discriminative and calibrative abilities of prognostic models developed by the four methods were assessed at different inclusion levels. Results: We found that the effect of imputation variation on the inclusion frequency was larger than the effect of sampling variation. When MI and bootstrapping were combined at the range of 0% (full model) to 90% of variable selection, bootstrap corrected c-index values of 0.70 to 0.71 and slope values of 0.64 to 0.86 were found. Conclusion: We recommend to account for both imputation and sampling variation in sets of missing data. The new procedure of combining MI with bootstrapping for variable selection, results in multivariable prognostic models with good performance and is therefore attractive to apply on data sets with missing values

    The impact of childhood vaccines on bacterial carriage in the nasopharynx: a longitudinal study.

    Get PDF
    BACKGROUND: There is increasing evidence that childhood vaccines have effects that extend beyond their target disease. The objective of this study was to assess the effects of routine childhood vaccines on bacterial carriage in the nasopharynx. METHODS: A cohort of children from rural Gambia was recruited at birth and followed up for one year. Nasopharyngeal swabs were taken immediately after birth, every two weeks for the first six months and then every other month. The presence of bacteria in the nasopharynx (Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus) was compared before and after the administration of DTP-Hib-HepB and measles-yellow fever vaccines. RESULTS: A total of 1,779 nasopharyngeal swabs were collected from 136 children for whom vaccination data were available. The prevalence of bacterial carriage was high: 82.2% S. pneumoniae, 30.6%, S.aureus, 27.8% H. influenzae. Carriage of H. influenzae (OR = 0.36; 95% CI: 0.13, 0.99) and S. pneumoniae (OR = 0.25; 95% CI: 0.07, 0.90) were significantly reduced after measles-yellow fever vaccination; while DTP-Hib-HepB had no effect on bacterial carriage. CONCLUSIONS: Nasopharyngeal bacterial carriage is unaffected by DTP-Hib-HepB vaccination and reduced after measles-yellow fever vaccination

    Exploring the Feasibility of Service Integration in a Low-Income Setting: A Mixed Methods Investigation into Different Models of Reproductive Health and HIV Care in Swaziland.

    Get PDF
    Integrating reproductive health (RH) with HIV care is a policy priority in high HIV prevalence settings, despite doubts surrounding its feasibility and varying evidence of effects on health outcomes. The process and outcomes of integrated RH-HIV care were investigated in Swaziland, through a comparative case study of four service models, ranging from fully integrated to fully stand-alone HIV services, selected purposively within one town. A client exit survey (n=602) measured integrated care received and unmet family planning (FP) needs. Descriptive statistics were used to assess the degree of integration per clinic and client demand for services. Logistic regression modelling was used to test the hypothesis that clients at more integrated sites had lower unmet FP needs than clients in a stand-alone site. Qualitative methods included in-depth interviews with clients and providers to explore contextual factors influencing the feasibility of integrated RH-HIV care delivery; data were analysed thematically, combining deductive and inductive approaches. Results demonstrated that clinic models were not as integrated in practice as had been claimed. Fragmentation of HIV care was common. Services accessed per provider were no higher at the more integrated clinics compared to stand-alone models (p>0.05), despite reported demand. While women at more integrated sites received more FP and pregnancy counselling than stand-alone models, they received condoms (a method of choice) less often, and there was no statistical evidence of difference in unmet FP needs by model of care. Multiple contextual factors influenced integration practices, including provider de-skilling within sub-specialist roles; norms of task-oriented routinised HIV care; perceptions of heavy client loads; imbalanced client-provider interactions hindering articulation of RH needs; and provider motivation challenges. Thus, despite institutional support, factors related to the social context of care inhibited provision of fully integrated RH-HIV services in these clinics. Programmes should move beyond simplistic training and equipment provision if integrated care interventions are to be sustained

    Longer sleep is associated with lower BMI and favorable metabolic profiles in UK adults: Findings from the National Diet and Nutrition Survey

    Get PDF
    Ever more evidence associates short sleep with increased risk of metabolic diseases such as obesity, which may be related to a predisposition to non-homeostatic eating. Few studies have concurrently determined associations between sleep duration and objective measures of metabolic health as well as sleep duration and diet, however. We therefore analyzed associations between sleep duration, diet and metabolic health markers in UK adults, assessing associations between sleep duration and 1) adiposity, 2) selected metabolic health markers and 3) diet, using National Diet and Nutrition Survey data. Adults (n = 1,615, age 19–65 years, 57.1% female) completed questions about sleep duration and 3 to 4 days of food diaries. Blood pressure and waist circumference were recorded. Fasting blood lipids, glucose, glycated haemoglobin (HbA1c), thyroid hormones, and high-sensitivity C-reactive protein (CRP) were measured in a subset of participants. We used regression analyses to explore associations between sleep duration and outcomes. After adjustment for age, ethnicity, sex, smoking, and socioeconomic status, sleep duration was negatively associated with body mass index (-0.46 kg/m2 per hour, 95% CI -0.69 to -0.24 kg/m2, p < 0.001) and waist circumference (-0.9 cm per hour, 95% CI -1.5 to -0.3cm, p = 0.004), and positively associated with high-density lipoprotein cholesterol (0.03 mmol/L per hour, 95% CI 0.00 to 0.05, p = 0.03). Sleep duration tended to be positively associated with free thyroxine levels and negatively associated with HbA1c and CRP (p = 0.09 to 0.10). Contrary to our hypothesis, sleep duration was not associated with any dietary measures (p ≥ 0.14). Together, our findings show that short-sleeping UK adults are more likely to have obesity, a disease with many comorbidities
    corecore