3,627 research outputs found
A systematic review of interventions to enhance access to best practice primary health care for chronic disease management, prevention and episodic care
Background: Although primary health care (PHC) is a key component of all health care systems, services are not always readily available, accessible or affordable. This systematic review examines effective strategies to enhance access to best practice processes of PHC in three domains: chronic disease management, prevention and episodic care. Methods. An extensive search of bibliographic data bases to identify peer and non-peer reviewed literature was undertaken. Identified papers were screened to identify and classify intervention studies that measured the impact of strategies (singly or in combination) on change in use or the reach of services in defined population groups (evaluated interventions). Results: The search identified 3,148 citations of which 121 were intervention studies and 75 were evaluated interventions. Evaluated interventions were found in all three domains: prevention (n=45), episodic care (n=19), and chronic disease management (n=11). They were undertaken in a number of countries including Australia (n=25), USA (n=25), and UK (n=15). Study quality was ranked as high (31% of studies), medium (61%) and low (8%). The 75 evaluated interventions tested a range of strategies either singly (n=46 studies) or as a combination of two (n=20) or more strategies (n=9). Strategies targeted both health providers and patients and were categorised to five groups: practice re-organisation (n=43 studies), patient support (n=29), provision of new services (n=19), workforce development (n=11), and financial incentives (n=9). Strategies varied by domain, reflecting the complexity of care needs and processes. Of the 75 evaluated interventions, 55 reported positive findings with interventions using a combination of strategies more likely to report positive results. Conclusions: This review suggests that multiple, linked strategies targeting different levels of the health care system are most likely to improve access to best practice PHC. The proposed changes in the structure of PHC in Australia may provide opportunities to investigate the factors that influence access to best practice PHC and to develop and implement effective, evidence based strategies to address these. © 2012 Comino et al.; licensee BioMed Central Ltd
Prolonged low flow reduces reactive hyperemia and augments low flow mediated constriction in the brachial artery independent of the menstrual cycle
© 2013 Rakobowchuk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Non-invasive forearm ischemia-reperfusion injury and low flow induced vascular dysfunction models provide methods to
evaluate vascular function. The role of oestrogen, an endogenous anti-oxidant on recovery from ischemia-reperfusion injury
has not been evaluated nor has the impact of prolonged low flow on vascular function been established. Eight healthy women (33610 yr) attended the lab during the follicular, ovulatory and mid-luteal phases of their menstrual cycles. After 30 minutes of rest, brachial artery vascular function was assessed by ultrasound measurements of diameter changes during 5 minutes of forearm ischemia and 3 minutes after. Subsequently, a 20-minute forearm ischemia period was completed. Further, vascular function assessments were completed 15, 30 and 45 minutes into recovery. Flow-mediated dilation, lowflow-mediated constriction, and reactive hyperaemia proximal to the area of ischemia were determined. Flow-mediated dilation was reduced at 15 minutes of recovery but recovered at 30 and 45 minutes (PRE: 7.161.0%, POST15:4.560.6%, POST30:5. 560.7% POST45:5.960.4%, p,0.01). Conversely, low-flow mediated constriction increased (PRE: 21.360.4%, POST15: 23.360.6%, POST30: 22.560.5% POST45: 21.560.12%, p,0.01). Reactive hyperaemia was reduced throughout recovery (p,0.05). Data were unaffected by menstrual phase. Prolonged low flow altered vascular function and may relate as much to increased vasoconstriction as with decreased vasodilation. Reductions in anterograde shear and greater retrograde shear likely modulate the brachial artery response, but the reduced total shear also plays an important role. The data suggest substantial alterations in vascular function proximal to areas of ischemia with potential clinical implications following reperfusion.British Heart Foundation (PG/08/060/25340),a Physiological Society summer studentship to SG, and a Wellcome Trust Vacation Studentship to EP
Mechanical behaviour of additively manufactured lunar regolith simulant components
Additive manufacturing and its related techniques have frequently been put forward as a promising candidate for planetary in-situ manufacturing, from building life-sustaining habitats on the Moon to fabricating various replacements parts, aiming to support future extra-terrestrial human activity. This paper investigates the mechanical behaviour of lunar regolith simulant material components, which is a potential future space engineering material, manufactured by a laser-based powder bed fusion additive manufacturing system. The influence of laser energy input during processing was associated with the evolution of component porosity, measured via optical and scanning electron microscopy in combination with gas expansion pycnometry. The compressive strength performance and Vickers microhardness of the components were analysed and related back to the processing history and resultant microstructure of the lunar regolith simulant build material. Fabricated structures exhibited a relative porosity of 44 – 49% and densities ranging from 1.76 – 2.3 g cm-3 , with a maximum compressive strength of 4.2 ± 0.1 MPa and elastic modulus of 287.3 ± 6.6 MPa, the former is comparable to a typical masonry clay brick (3.5 MPa). The 2 AM parts also had an average hardness value of 657 ± 14 HV0.05/15, better than borosilicate glass (580 HV). This study has shed significant insight into realizing the potential of a laser-based powder bed fusion AM process to deliver functional engineering assets via in-situ and abundant material sources that can be potentially used for future engineering applications in aerospace and astronautics
Implementing guidelines to routinely prevent chronic vascular disease in primary care: The Preventive Evidence into Practice cluster randomised controlled trial
Objective: To evaluate an intervention to improve implementation of guidelines for the prevention of chronic vascular disease. Setting: 32 urban general practices in 4 Australian states. Randomisation: Stratified randomisation of practices. Participants: 122 general practitioners (GPS) and practice nurses (PNs) were recruited at baseline and 97 continued to 12 months. 21 848 patient records were audited for those aged 40-69 years who attended the practice in the previous 12 months without heart disease, stroke, diabetes, chronic renal disease, cognitive impairment or severe mental illness. Intervention: The practice level intervention over 6 months included small group training of practice staff, feedback on audited performance, practice facilitation visits and provision of patient education and referral information. Outcome measures: Primary: 1. Change in proportion of patients aged 40-69 years with smoking status, alcohol intake, body mass index (BMI), waist circumference (WC), blood pressure (BP) recorded and for those aged 45-69 years with lipids, fasting blood glucose and cardiovascular risk in the medical record. 2. Change in the level of risk for each factor. Secondary: change in self-reported frequency and confidence of GPS and PNs in assessment. Results: Risk recording improved in the intervention but not the control group for WC (OR 2.52 (95% CI 1.30 to 4.91)), alcohol consumption (OR 2.19 (CI 1.04 to 4.64)), smoking status (OR 2.24 (1.17 to 4.29)) and cardiovascular risk (OR 1.50 (1.04 to 2.18)). There was no change in recording of BP, lipids, glucose or BMI and no significant change in the level of risk factors based on audit data. The confidence but not reported practices of GPS and PNs in the intervention group improved in the assessment of some risk factors. Conclusions: This intervention was associated with improved recording of some risk factors but no change in the level of risk at the follow-up audit. Trial registration number: Australian and New Zealand Clinical Trials Register (ANZCTR): ACTRN12612000578808, results
QCD corrections to plus -boson production at the LHC
The associated production at the LHC is an important process in
investigating the color-octet mechanism of non-relativistic QCD in describing
the processes involving heavy quarkonium. We calculate the next-to-leading
order (NLO) QCD corrections to the associated production at the
LHC within the factorization formalism of nonrelativistic QCD, and provide the
theoretical predictions for the distribution of the transverse
momentum. Our results show that the differential cross section at the
leading-order is significantly enhanced by the NLO QCD corrections. We conclude
that the LHC has the potential to verify the color-octet mechanism by measuring
the production events.Comment: 14 page revtex, 5 eps figures, to appear in JHEP. fig5 and the
corresponding analysis are correcte
Sprint interval and sprint continuous training increases circulating CD34+ cells and cardio-respiratory fitness in young healthy women
The improvement of vascular health in the exercising limb can be attained by sprint interval training (SIT).
However, the effects on systemic vascular function and on circulating angiogenic cells (CACs) which may contribute to endothelial repair have not been investigated. Additionally, a comparison between SIT and sprint continuous training (SCT) which is less time committing has not been made
Video-tracking and On-plant Tests Show Cry1Ab Resistance Influences Behavior and Survival of Neonate Ostrinia nubilalis Following Exposure to Bt Maize
To examine how resistance to Bacillus thuringiensis (Bt) toxins influences movement and survival of European corn borer (Ostrinia nubilalis [Hübner]) neonates, the responses of Cry1Ab-resistant , -susceptible, and hybrid (F1) larvae were examined using two different techniques. First, using an automated video-tracking system, aspects of O. nubilalis movement were quantified in the presence of artificial diet incorporating 50% non-Bt or insect-resistant Cry1Ab maize tissue. Second, O. nubilalis dispersal and survival were measured 48–72 h after hatching on a Cry1Ab maize plant surrounded by two non-Bt maize plants. Video tracking indicated the presence of Cry1Ab tissue increased the total distance moved (m), time moving (%), and time away from the diet (%) for O. nubilalis while decreasing meander (degrees/cm). However, resistant larvae showed reduced movement and increased meander (≈localized searching) relative to susceptible or hybrid larvae on diet incorporating Cry1Ab tissue. Conversely, when placed onto Cry1Ab maize plants, resistant larvae were more likely than susceptible O. nubilalis to disperse onto adjacent non-Bt plants. The difference in on-plant dispersal seems to reflect greater survival after toxin exposure for resistant larvae rather than increased activity. These results suggest that simplified ‘Petri dish’ tests may not be predictive of larval movement among non-Bt and insect-resistant Bt maize plants. Because models of O. nubilalis resistance evolution incorporate various movement and survival parameters, improved data for on-plant behavior and survival of Bt- resistant , -susceptible, and hybrid larvae should help preserve the efficacy of transgenic insect-resistant maize
Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture
This experiment was designed to study three determinant factors in decomposition patterns of soil organic matter (SOM): temperature, water and carbon (C) inputs. The study combined field measurements with soil lab incubations and ends with a modelling framework based on the results obtained. Soil respiration was periodically measured at an oak savanna woodland and a ponderosa pine plantation. Intact soils cores were collected at both ecosystems, including soils with most labile C burnt off, soils with some labile C gone and soils with fresh inputs of labile C. Two treatments, dry-field condition and field capacity, were applied to an incubation that lasted 111 days. Short-term temperature changes were applied to the soils periodically to quantify temperature responses. This was done to prevent confounding results associated with different pools of C that would result by exposing treatments chronically to different temperature regimes. This paper discusses the role of the above-defined environmental factors on the variability of soil C dynamics. At the seasonal scale, temperature and water were, respectively, the main limiting factors controlling soil CO2 efflux for the ponderosa pine and the oak savanna ecosystems. Spatial and seasonal variations in plant activity (root respiration and exudates production) exerted a strong influence over the seasonal and spatial variation of soil metabolic activity. Mean residence times of bulk SOM were significantly lower at the Nitrogen (N)-rich deciduous savanna than at the N-limited evergreen dominated pine ecosystem. At shorter time scales (daily), SOM decomposition was controlled primarily by temperature during wet periods and by the combined effect of water and temperature during dry periods. Secondary control was provided by the presence/absence of plant derived C inputs (exudation). Further analyses of SOM decomposition suggest that factors such as changes in the decomposer community, stress-induced changes in the metabolic activity of decomposers or SOM stabilization patterns remain unresolved, but should also be considered in future SOM decomposition studies. Observations and confounding factors associated with SOM decomposition patterns and its temperature sensitivity are summarized in the modeling framework
Electroweak corrections to W-boson pair production at the LHC
Vector-boson pair production ranks among the most important Standard-Model
benchmark processes at the LHC, not only in view of on-going Higgs analyses.
These processes may also help to gain a deeper understanding of the electroweak
interaction in general, and to test the validity of the Standard Model at
highest energies. In this work, the first calculation of the full one-loop
electroweak corrections to on-shell W-boson pair production at hadron colliders
is presented. We discuss the impact of the corrections on the total cross
section as well as on relevant differential distributions. We observe that
corrections due to photon-induced channels can be amazingly large at energies
accessible at the LHC, while radiation of additional massive vector bosons does
not influence the results significantly.Comment: 29 pages, 15 figures, 4 tables; some references and comments on
\gamma\gamma -> WW added; matches version published in JHE
- …
