1,179 research outputs found

    HPV infection and immunochemical detection of cell-cycle markers in verrucous carcinoma of the penis

    Get PDF
    Penile verrucous carcinoma is a rare disease and little is known of its aetiology or pathogenesis. In this study we examined cell-cycle proteins expression and correlation with human papillomavirus infection in a series of 15 pure penile verrucous carcinomas from a single centre. Of 148 penile tumours, 15 (10%) were diagnosed as pure verrucous carcinomas. The expression of the cell-cycle-associated proteins p53, p21, RB, p16INK4A and Ki67 were examined by immunohistochemistry. Human papillomavirus infection was determined by polymerase chain reaction to identify a wide range of virus types. The expression of p16INK4A and Ki67 was significantly lower in verrucous carcinoma than in usual type squamous cell carcinoma, whereas the expression of p53, p21 and RB was not significantly different. p53 showed basal expression in contrast to usual type squamous cell carcinoma. Human papillomavirus infection was present in only 3 out of 13 verrucous carcinomas. Unique low-risk, high-risk and mixed viral infections were observed in each of the three cases. In conclusion, lower levels of p16INK4A and Ki67 expressions differentiate penile verrucous carcinoma from usual type squamous cell carcinoma. The low Ki67 index reflects the slow-growing nature of verrucous tumours. The low level of p16INK4A expression and human papillomavirus detection suggests that penile verrucous carcinoma pathogenesis is unrelated to human papillomavirus infection and the oncogenes and tumour suppressor genes classically altered by virus infection.Peer reviewedFinal Accepted Versio

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz

    An International Laboratory for Systems and Computational Neuroscience

    Get PDF
    The neural basis of decision-making has been elusive and involves the coordinated activity of multiple brain structures. This NeuroView, by the International Brain Laboratory (IBL), discusses their efforts to develop a standardized mouse decision-making behavior, to make coordinated measurements of neural activity across the mouse brain, and to use theory and analyses to uncover the neural computations that support decision-making. The neural basis of decision-making has been elusive and involves the coordinated activity of multiple brain structures. This NeuroView, by the International Brain Laboratory (IBL), discusses their efforts to develop a standardized mouse decision-making behavior, to make coordinated measurements of neural activity across the mouse brain, and to use theory and analyses to uncover the neural computations that support decision-making

    The availability of novelty sweets within the high school fringe

    Get PDF
    Background Reducing sugar consumption is a primary focus of current global public health policy. Achieving 5% of total energy from free sugars will be difficult acknowledging the concentration of free sugars in sugar sweetened beverages, confectionery and as hidden sugars in many savoury items. The expansion of the novelty sweet market in the UK has significant implications for children and young adults as they contribute to dental caries, dental erosion and obesity. Objective To identify the most available types of novelty sweets within the high school fringe in Cardiff, UK and to assess their price range and where and how they were displayed in shops. Subjects and methods Shops within a ten minute walking distance around five purposively selected high schools in the Cardiff aea representing different levels of deprivation were visited. Shops in Cardiff city centre and three supermarkets were also visited to identify the most commonly available novelty sweets. Results The ten most popular novelty sweets identified in these scoping visits were (in descending order): Brain Licker, Push Pop, Juicy Drop, Lickedy Lips, Big Baby Pop, Vimto candy spray, Toxic Waste, Tango candy spray, Brain Blasterz Bitz and Mega Mouth candy spray. Novelty sweets were located on low shelves which were accessible to all age-groups in 73% (14 out of 19) of the shops. Novelty sweets were displayed in the checkout area in 37% (seven out of 19) shops. The price of the top ten novelty sweets ranged from 39p to £1. Conclusion A wide range of acidic and sugary novelty sweets were easily accessible and priced within pocket money range. Those personnel involved in delivering dental and wider health education or health promotion need to be aware of recent developments in children's confectionery. The potential effects of these novelty sweets on both general and dental health require further investigation

    Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas

    Get PDF
    Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence(1,2). Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies(3). To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma(4,5). We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth

    Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies.

    Get PDF
    OBJECTIVE: Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. RESEARCH DESIGN AND METHODS: Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. RESULTS: Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. CONCLUSIONS: Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations

    Applications of CRISPR–Cas systems in neuroscience

    Get PDF
    Genome-editing tools, and in particular those based on CRISPR-Cas (clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03

    Homogenisation of sulphide inclusions within diamonds: A new approach to diamond inclusion geochemistry

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Base metal sulphide (BMS) inclusions in diamonds provide a unique insight into the chalcophile and highly siderophile element composition of the mantle. Entombed within their diamond hosts, these provide a more robust (closed system) sample, from which to determine the trace element, Re-Os and S-isotopic compositions of the mantle than mantle xenoliths or orogenic peridotites, as they are shielded from alteration during ascent to the Earth’s crust and subsequent surface weathering. However, at temperatures below 1100 °C some BMS inclusions undergo subsolidus re-equilibration from an original monosulphide solid solution (Mss) and this causes fractionation of the major and trace elements within the inclusions. Thus to study the subjects noted above, current techniques require the entire BMS inclusion to be extracted for analyses. Unfortunately, ‘flaking’ of inclusions during break-out is a frequent occurrence and hence the risk of accidentally under-sampling a portion of the BMS inclusion is inherent in current practices. This loss may have significant implications for Re-Os isotope analyses where incomplete sampling of a Re-rich phase, such as chalcopyrite that typically occurs at the outer margins of BMS inclusions, may induce significant bias in the Re-Os and 187Os/188Os measurements and resulting model and isochron ages. We have developed a method for the homogenisation of BMS inclusions in diamond prior to their break-out from the host stone. Diamonds are heated to 1100 °C and then quenched to chemically homogenise any sulphide inclusions for both major and trace elements. Using X-ray Computed Microtomography (µCT) we determine the shape and spatial setting of multiple inclusions within a host stone and crucially show that the volume of a BMS inclusion is the same both before and after homogenisation. We show that the homogenisation process significantly reduces the inherent variability of in situ analysis when compared with unhomogenised BMS, thereby widening the scope for multiple methods for quantitative analysis, even on ‘flakes’ of single BMS inclusions. Finally we show that the trace elements present in peridotite (P-type) and eclogitic (E-type) BMS are distinct, with P-type diamonds having systematically higher total platinum-group element (particularly Os, Ir, Ru) and Te and As concentrations. These distinctions suggest that the PGE and semi-metal budgets of mantle-derived partial melts will be significantly dependent upon the type(s) and proportions of sulphides present in the mantle source.HSRH gratefully acknowledges her current Postdoctoral Fellowship with the Claude Leon Foundation and the support of the CIMERA centre of excellence at the Universities of the Witwatersrand and Johannesburg. The Diamond Trading Company (a member of the DeBeers Group of Companies) is thanked for the donation to JWH of the diamonds used in this study. The analytical work in this study was supported by NERC SoS Consortium grant NE/M011615/1 “Te and Se Cycling and Supply” awarded to Cardiff University. The authors would like to thank Associate Editor Amy Riches and the three anonymous reviewers for their advice and comments that significantly improved the paper

    Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs

    Get PDF
    The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples
    corecore