49,441 research outputs found

    H4-Alkanes: A new class of hydrogen storage material?

    Full text link
    The methane-based material (H2_2)4_4CH4_4, also called H4M for short, is in essence a methane molecule with 4 physisorbed H2_2 molecules. While H4M has exceptionally high hydrogen storage densities when it forms a molecular solid, unfortunately, this solid is only stable at impractically high pressures and/or low temperatures. To overcome this limitation, we show through simulations that longer alkanes (methane is the shortest alkane) also form stable structures that still physisorb 4 H2_2 molecules per carbon atom; we call those structures H4-alkanes. We further show via molecular dynamics simulations that the stability field of molecular solids formed from H4-alkanes increases remarkably with chain length compared to H4M, just as it does for regular alkanes. From our simulations of H4-alkanes with lengths 1, 4, 10, and 20, we see that e.g. for the 20-carbon the stability field is doubled at higher pressures. While even longer chains show only insignificant improvements, we discuss various other options to stabilize H4-alkanes more. Our proof-of-principle results lay the groundwork to show that H4-alkanes can become viable hydrogen storage materials.Comment: 6 pages, 7 figure

    Dirac nodal pockets in the antiferromagnetic parent phase of FeAs superconductors

    Full text link
    We show that previously measured small Fermi surface pockets within the antiferromagnetic phase of SrFe2As2 and BaFe2As2 are consistent with a Dirac dispersion modulated by interlayer hopping, giving rise to a Dirac point in k-space and a cusp in the magnetic field angle-dependent magnetic quantum oscillation frequencies. These findings support the existence of a nodal spin-density wave in these materials, which could play an important role in protecting the metallic state against localization effects. The speed of the Dirac fermions in SrFe2As2 and BaFe2As2 is found to be 14-20 times slower than in graphene, suggesting that the pnictides provide a laboratory for exploring the effects of strongly interacting Dirac fermions.Comment: 4 page

    Synthesis of polyethers of hexafluorobenzene and hexafluoropentanediol

    Get PDF
    Two new polyethers, poly /hexafluoropentamethylene tetrafluoro-p-phenylene ether/ and a completely hydroxyl-terminated polyether, is prepared by reactions of hexafluorobenzene with hexafluoropentanediol. The polyethers can be prepared as low molecular weight oils, as intermediate molecular weight waxes, or as high molecular weight elastomers

    Constraints on the average magnetic field strength of relic radio sources 0917+75 and 1401-33 from XMM-Newton observations

    Get PDF
    We observed two relic radio sources, 0917+75 and 1401-33, with the XMM-Newton X-ray observatory. We did not detect any X-ray emission, thermal or non-thermal, in excess of the local background level from either target. This imposes new upper limits on the X-ray flux due to inverse Compton scattering of photons from the cosmic microwave background by relativistic electrons in the relic sources, and new lower limits on the magnetic field strength from the relative strength of the radio and X-ray emission. The combination of radio and X-ray observations provides a measure of the magnetic field independent of equipartition or minimum energy assumptions. Due to increasing sensitivity of radio observations, the known population of cluster relics has been growing; however, studies of non-thermal X-ray emission from relics remain scarce. Our study adds to the small sample of relics studied in X-rays. In both relics, our field strength lower limits are slightly larger than estimates of the equipartition magnetic field.Comment: 11 pages, 5 figures. Accepted by MNRA

    A pilot study examining garment severance damage caused by a trained sharp-weapon user

    Get PDF
    The pilot study summarized in this paper aimed to raise awareness of a gap that exists in the forensic textile science literature about damage caused to clothing by trained sharp-weapon users. A male trained in the Filipino martial arts discipline of Eskrima performed attack techniques on a physical model of a male torso covered with a 97% cotton/3% elastane knitted T-shirt, that is, a garment commonly worn by males. Fabric severance appearance created by three different, but commonly available, knives was evaluated. High-speed video was used to capture each attack. After each attack the resulting damage to the garment was assessed. This pilot study highlighted differences in severances associated with weapon selection, that is, not all knives resulted in similar patterns of textile damage. In addition, a mixture of stab and slash severances were observed. The findings demonstrated the possible misinterpretation of textile damage under these circumstances compared to damage patterns reported in the existing forensic textile science literature for more commonly occurring knife attacks (i.e. stabbings)

    A NuSTAR observation of disk reflection from close to the neutron star in 4U 1608-52

    Get PDF
    Studying the reflection of X-rays off the inner edge of the accretion disk in a neutron star low-mass X-ray binary, allows us to investigate the accretion geometry and to constrain the radius of the neutron star. We report on a NuSTAR observation of 4U 1608-52 obtained during a faint outburst in 2014 when the neutron star, which has a known spin frequency of 620 Hz, was accreting at ~1-2% of the Eddington limit. The 3-79 keV continuum emission was dominated by a Gamma~2 power law, with a ~1-2% contribution from a kTbb~0.3-0.6 keV black body component. The high-quality NuSTAR spectrum reveals the hallmarks of disk reflection; a broad iron line peaking near 7~keV and a Compton back-scattering hump around ~20-30 keV. Modeling the disk reflection spectrum points to a binary inclination of i~30-40 degrees and a small `coronal' height of h<8.5 GM/c2. Furthermore, our spectral analysis suggests that the inner disk radius extended to Rin~7-10 GM/c2, close to the innermost stable circular obit. This constrains the neutron star radius to R<21 km and the redshift from the stellar surface to z>0.12, for a mass of M=1.5 Msun and a spin parameter of a=0.29.Comment: 5 pages, 4 figures, 1 table, MNRAS Letters in pres

    Fermi Surface of Cr1x_{1-x}Vx_x across the Quantum Critical Point

    Get PDF
    We have measured de Haas-van Alphen oscillations of Cr1x_{1-x}Vx_x, 0x0.050 \le x \le 0.05, at high fields for samples on both sides of the quantum critical point at xc=0.035x_c=0.035. For all samples we observe only those oscillations associated with a single small hole band with magnetic breakdown orbits of the reconstructed Fermi surface evident for x<xcx<x_c. The absence of oscillations from Fermi surface sheets most responsible for the spin density wave (SDW) in Cr for x>xcx>x_c is further evidence for strong fluctuation scattering of these charge carriers well into the paramagnetic regime. We find no significant mass enhancement of the carriers in the single observed band at any xx. An anomalous field dependence of the dHvA signal for our x=0.035x=0.035 crystal at particular orientations of the magnetic field is identified as due to magnetic breakdown that we speculate results from a field induced SDW transition at high fields.Comment: 8 pages with 7 figure

    Finite pseudo orbit expansions for spectral quantities of quantum graphs

    Full text link
    We investigate spectral quantities of quantum graphs by expanding them as sums over pseudo orbits, sets of periodic orbits. Only a finite collection of pseudo orbits which are irreducible and where the total number of bonds is less than or equal to the number of bonds of the graph appear, analogous to a cut off at half the Heisenberg time. The calculation simplifies previous approaches to pseudo orbit expansions on graphs. We formulate coefficients of the characteristic polynomial and derive a secular equation in terms of the irreducible pseudo orbits. From the secular equation, whose roots provide the graph spectrum, the zeta function is derived using the argument principle. The spectral zeta function enables quantities, such as the spectral determinant and vacuum energy, to be obtained directly as finite expansions over the set of short irreducible pseudo orbits.Comment: 23 pages, 4 figures, typos corrected, references added, vacuum energy calculation expande
    corecore