4,281 research outputs found
A prospective study of mortality from cryptococcal meningitis following treatment induction with 1200 mg oral fluconazole in Blantyre, Malawi.
OBJECTIVE: We have previously reported high ten-week mortality from cryptococcal meningitis in Malawian adults following treatment-induction with 800 mg oral fluconazole (57% [33/58]). National guidelines in Malawi and other African countries now advocate an increased induction dose of 1200 mg. We assessed whether this has improved outcomes.
DESIGN: This was a prospective observational study of HIV-infected adults with cryptococcal meningitis confirmed by diagnostic lumbar puncture. Treatment was with fluconazole 1200 mg/day for two weeks then 400mg/day for 8 weeks. Mortality within the first 10 weeks was the study end-point, and current results were compared with data from our prior patient cohort who started on fluconazole 800 mg/day.
RESULTS: 47 participants received fluconazole monotherapy. Despite a treatment-induction dose of 1200 mg, ten-week mortality remained 55% (26/47). This was no better than our previous study (Hazard Ratio [HR] of death on 1200 mg vs. 800 mg fluconazole: 1.29 (95% CI: 0.77-2.16, p = 0.332)). There was some evidence for improved survival in patients who had repeat lumbar punctures during early therapy to lower intracranial pressure (HR: 0.27 [95% CI: 0.07-1.03, p = 0.055]).
CONCLUSION: There remains an urgent need to identify more effective, affordable and deliverable regimens for cryptococcal meningitis
PETMiner - A visual analysis tool for petrophysical properties of core sample data
The aim of the PETMiner software is to reduce the time and monetary cost of analysing petrophysical data that is obtained from reservoir sample cores. Analysis of these data requires tacit knowledge to fill ‘gaps’ so that predictions can be made for incomplete data. Through discussions with 30 industry and academic specialists, we identified three analysis use cases that exemplified the limitations of current petrophysics analysis tools. We used those use cases to develop nine core requirements for PETMiner, which is innovative because of its ability to display detailed images of the samples as data points, directly plot multiple sample properties and derived measures for comparison, and substantially reduce interaction cost. An 11-month evaluation demonstrated benefits across all three use cases by allowing a consultant to: (1) generate more accurate reservoir flow models, (2) discover a previously unknown relationship between one easy-to-measure property and another that is costly, and (3) make a 100-fold reduction in the time required to produce plots for a report
Initial conditions, Discreteness and non-linear structure formation in cosmology
In this lecture we address three different but related aspects of the initial
continuous fluctuation field in standard cosmological models. Firstly we
discuss the properties of the so-called Harrison-Zeldovich like spectra. This
power spectrum is a fundamental feature of all current standard cosmological
models. In a simple classification of all stationary stochastic processes into
three categories, we highlight with the name ``super-homogeneous'' the
properties of the class to which models like this, with , belong. In
statistical physics language they are well described as glass-like. Secondly,
the initial continuous density field with such small amplitude correlated
Gaussian fluctuations must be discretised in order to set up the initial
particle distribution used in gravitational N-body simulations. We discuss the
main issues related to the effects of discretisation, particularly concerning
the effect of particle induced fluctuations on the statistical properties of
the initial conditions and on the dynamical evolution of gravitational
clustering.Comment: 28 pages, 1 figure, to appear in Proceedings of 9th Course on
Astrofundamental Physics, International School D. Chalonge, Kluwer, eds N.G.
Sanchez and Y.M. Pariiski, uses crckapb.st pages, 3 figure, ro appear in
Proceedings of 9th Course on Astrofundamental Physics, International School
D. Chalonge, Kluwer, Eds. N.G. Sanchez and Y.M. Pariiski, uses crckapb.st
Reaction rates and transport in neutron stars
Understanding signals from neutron stars requires knowledge about the
transport inside the star. We review the transport properties and the
underlying reaction rates of dense hadronic and quark matter in the crust and
the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of
Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes,
references updated, overview graphic added in the introduction, improvements
in Sec IV.A.
How do MNC R&D laboratory roles affect employee international assignments?
Research and development (R&D) employees are important human resources for multinational corporations (MNCs) as they are the driving force behind the advancement of innovative ideas and products. International assignments of these employees can be a unique way to upgrade their expertise; allowing them to effectively recombine their unique human resources to progress existing knowledge and advance new ones. This study aims to investigate the effect of the roles of R&D laboratories in which these employees work on the international assignments they undertake. We categorise R&D laboratory roles into those of the support laboratory, the locally integrated laboratory and the internationally interdependent laboratory. Based on the theory of resource recombinations, we hypothesise that R&D employees in support laboratories are not likely to assume international assignments, whereas those in locally integrated and internationally interdependent laboratories are likely to assume international assignments. The empirical evidence, which draws from research conducted on 559 professionals in 66 MNC subsidiaries based in Greece, provides support to our hypotheses. The resource recombinations theory that extends the resource based view can effectively illuminate the international assignment field. Also, research may provide more emphasis on the close work context of R&D scientists rather than analyse their demographic characteristics, the latter being the focus of scholarly practice hitherto
Minimal Supersymmetric Inverse Seesaw: Neutrino masses, lepton flavour violation and LHC phenomenology
We study neutrino masses in the framework of the supersymmetric inverse
seesaw model. Different from the non-supersymmetric version a minimal
realization with just one pair of singlets is sufficient to explain all
neutrino data. We compute the neutrino mass matrix up to 1-loop order and show
how neutrino data can be described in terms of the model parameters. We then
calculate rates for lepton flavour violating (LFV) processes, such as , and chargino decays to singlet scalar neutrinos. The latter decays
are potentially observable at the LHC and show a characteristic decay pattern
dictated by the same parameters which generate the observed large neutrino
angles.Comment: 26 pages, 4 figures; added explanatory comments, final version for
publicatio
Spontaneous R-Parity Violation, Flavor Symmetry and Tribimaximal Mixing
We explore the possibility of spontaneous R parity violation in the context
of flavor symmetry. Our model contains singlet matter chiral superfields which are arranged as triplet of
and as well as few additional Higgs chiral superfields which are singlet
under MSSM gauge group and belong to triplet and singlet representation under
the flavor symmetry. R parity is broken spontaneously by the vacuum
expectation values of the different sneutrino fields and hence we have
neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in
our model, in addition to the standard model neutrino- gauge singlet neutrino,
gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we
have an extended neutral fermion mass matrix. We explore the low energy
neutrino mass matrix for our model and point out that with some specific
constraints between the sneutrino vacuum expectation values as well as the MSSM
gauge singlet Higgs vacuum expectation values, the low energy neutrino mass
matrix will lead to a tribimaximal mixing matrix. We also analyze the potential
minimization for our model and show that one can realize a higher vacuum
expectation value of the singlet
sneutrino fields even when the other sneutrino vacuum expectation values are
extremely small or even zero.Comment: 18 page
The influence of spatial pattern on visual short-term memory for contrast
Several psychophysical studies of visual short-term memory (VSTM) have shown high-fidelity storage capacity for many properties of visual stimuli. On judgments of the spatial frequency of gratings, for example, discrimination performance does not decrease significantly, even for memory intervals of up to 30 s. For other properties, such as stimulus orientation and contrast, however, such “perfect storage” behavior is not found, although the reasons for this difference remain unresolved. Here, we report two experiments in which we investigated the nature of the representation of stimulus contrast in VSTM using spatially complex, two-dimensional random-noise stimuli. We addressed whether information about contrast per se is retained during the memory interval by using a test stimulus with the same spatial structure but either the same or the opposite local contrast polarity, with respect to the comparison (i.e., remembered) stimulus. We found that discrimination thresholds got steadily worse with increasing duration of the memory interval. Furthermore, performance was better when the test and comparison stimuli had the same local contrast polarity than when they were contrast-reversed. Finally, when a noise mask was introduced during the memory interval, its disruptive effect was maximal when the spatial configuration of its constituent elements was uncorrelated with those of the comparison and test stimuli. These results suggest that VSTMfor contrast is closely tied to the spatial configuration of stimuli and is not transformed into a more abstract representation
Evidence for an excess of B -> D(*) Tau Nu decays
Based on the full BaBar data sample, we report improved measurements of the
ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or
mu. These ratios are sensitive to new physics contributions in the form of a
charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) =
0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0
sigma and 2.7 sigma, respectively. Taken together, our results disagree with
these expectations at the 3.4 sigma level. This excess cannot be explained by a
charged Higgs boson in the type II two-Higgs-doublet model. We also report the
observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the
format of Figure 2 and included the effect of the change of the Tau
polarization due to the charged Higg
A search for the decay modes B+/- to h+/- tau l
We present a search for the lepton flavor violating decay modes B+/- to h+/-
tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472
million BBbar pairs. The search uses events where one B meson is fully
reconstructed in one of several hadronic final states. Using the momenta of the
reconstructed B, h, and l candidates, we are able to fully determine the tau
four-momentum. The resulting tau candidate mass is our main discriminant
against combinatorial background. We see no evidence for B+/- to h+/- tau l
decays and set a 90% confidence level upper limit on each branching fraction at
the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
- …
