1,279 research outputs found

    Electrical transport and optical studies of ferromagnetic Cobalt doped ZnO nanoparticles exhibiting a metal-insulator transition

    Full text link
    The observed correlation of oxygen vacancies and room temperature ferromagnetic ordering in Co doped ZnO1-o nanoparticles reported earlier (Naeem et al Nanotechnology 17, 2675-2680) has been further explored by transport and optical measurements. In these particles room temperature ferromagnetic ordering had been observed to occur only after annealing in forming gas. In the current work the optical properties have been studied by diffuse reflection spectroscopy in the UV-Vis region and the band gap of the Co doped compositions has been found to decrease with Co addition. Reflections minima are observed at the energies characteristic of Co+2 d-d (tethrahedral symmetry) crystal field transitions, further establishing the presence of Co in substitutional sites. Electrical transport measurements on palletized samples of the nanoparticles show that the effect of a forming gas is to strongly decrease the resistivity with increasing Co concentration. For the air annealed and non-ferromagnetic samples the variation in the resistivity as a function of Co content are opposite to those observed in the particles prepared in forming gas. The ferromagnetic samples exhibit an apparent change from insulator to metal with increasing temperatures for T>380K and this change becomes more pronounced with increasing Co content. The magnetic and resistive behaviors are correlated by considering the model by Calderon et al [M. J. Calderon and S. D. Sarma, Annals of Physics 2007 (Accepted doi: 10.1016/j.aop.2007.01.010] where the ferromagnetism changes from being mediated by polarons in the low temperature insulating region to being mediated by the carriers released from the weakly bound states in the higher temperature metallic region.Comment: 7 pages, 6 figure

    A formal approach to discovering simultaneous additive masking between auditory medical alarms

    Get PDF
    publisher: Elsevier articletitle: A formal approach to discovering simultaneous additive masking between auditory medical alarms journaltitle: Applied Ergonomics articlelink: http://dx.doi.org/10.1016/j.apergo.2016.07.008 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved

    Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route

    Full text link
    Magnetic nanoparticles of cobalt ferrite have been synthesized by wet chemical method using stable ferric and cobalt salts with oleic acid as the surfactant. X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) confirmed the formation of single phase cobalt ferrite nanoparticles in the range 15-48nm depending on the annealing temperature and time. The size of the particles increases with annealing temperature and time while the coercivity goes through a maximum, peaking at around 28nm. A very large coercivity (10.5kOe) is observed on cooling down to 77K while typical blocking effects are observed below about 260K. The high field moment is observed to be small for smaller particles and approaches the bulk value for large particles.Comment: 18 pages, accepted in JMMM, (May, 2006

    The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials

    Get PDF
    The use of natural compounds as an alternative source of antimicrobials has become a necessity given the growing concern over global antimicrobial resistance. Polyphenols, found in various edible plants, offers one potential solution to this. We aimed to investigate the possibility of using curcumin within the context of oral health as a way of inhibiting and preventing the harmful development of Candida albicans biofilms. We undertook a series of adsorption experiments with varying concentrations of curcumin, showing that 50 ug/ml could prevent adhesion. This effect could be further synergised by the curcumin pretreatment of yeast cells to obtain significantly greater inhibition (>90, p<0.001). Investigation of the biological impact of curcumin showed that it preferentially affected immature morphological forms (yeast and germlings), and actively promoted aggregation of the cells. Transcriptional analyses showed that key adhesins were down-regulated (ALS1 and ALS3), whereas aggregation related genes (ALS5 and AAF1) were up-regulated. Collectively, these data demonstrated that curcumin elicits anti-adhesive effects and that induces transcription of genes integrally involved in the processes related to biofilm formation. Curcumin and associated polyphenols therefore have the capacity to be developed for use in oral healthcare to augment existing preventative strategies for candidal biofilms on the denture surface

    Candida albicans biofilm heterogeneity does not influence denture stomatitis but strongly influences denture cleansing capacity

    Get PDF
    Approximately 20  % of the UK population wear some form of denture prosthesis, resulting in denture stomatitis in half of these individuals. Candida albicans is primarily attributed as the causative agent, due to its biofilm -forming ability. Recently, there has been increasing evidence of C. albicans biofilm heterogeneity and the negative impact it can have clinically; however, this phenomenon has yet to be studied in relation to denture isolates. The aims of this study were to evaluate C. albicans biofilm formation of clinical denture isolates in a denture environment and to assess antimicrobial activity of common denture cleansers against these tenacious communities. C. albicans isolated from dentures of healthy and diseased individuals was quantified using real-time PCR and biofilm biomass assessed using crystal violet. Biofilm development on the denture substratum poly(methyl methacrylate), Molloplast B and Ufi-gel was determined. Biofilm formation was assessed using metabolic and biomass stains, following treatment with denture hygiene products. Although C. albicans was detected in greater quantities in diseased individuals, it was not associated with increased biofilm biomass. Denture substrata were shown to influence biofilm biomass, with poly(methyl methacrylate) providing the most suitable environment for C. albicans to reside. Of all denture hygiene products tested, Milton had the most effective antimicrobial activity, reducing biofilm biomass and viability the greatest. Overall, our results highlight the complex nature of denture- related disease, and disease development cannot always be attributed to a sole cause. It is the distinct combination of various factors that ultimately determines the pathogenic outcome

    Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature

    Get PDF
    Cobaltferritenanoparticles (size: 26±4nm) have been synthesized by coprecipitation route. The coercivity of nanoparticles follows a simple model of thermal activation of particle moments over the anisotropy barrier in the temperature range of 30–300K in accordance with Kneller’s law; however, at low temperatures
    corecore