38 research outputs found

    Stress-Induced Activation of Heterochromatic Transcription

    Get PDF
    Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular mechanisms involved

    Absence of an association of human polyomavirus and papillomavirus infection with lung cancer in China: a nested case–control study

    Get PDF
    BACKGROUND: Studies of human polyomavirus (HPyV) infection and lung cancer are limited and those regarding the association of human papillomavirus (HPV) infection and lung cancer have produced inconsistent results. METHODS: We conducted a nested case–control study to assess the association between incident lung cancer of various histologies and evidence of prior infection with HPyVs and HPVs. We selected serum from 183 cases and 217 frequency matched controls from the Yunnan Tin Miner’s Cohort study, which was designed to identify biomarkers for early detection of lung cancer. Using multiplex liquid bead microarray (LBMA) antibody assays, we tested for antibodies to the VP1 structural protein and small T antigen (ST-Ag) of Merkel cell, KI, and WU HPyVs. We also tested for antibodies against HPV L1 structural proteins (high-risk types 16, 18, 31, 33, 52, and 58 and low-risk types 6 and 11) and E6 and E7 oncoproteins (high risk types 16 and 18). Measures of antibody reactivity were log transformed and analyzed using logistic regression. RESULTS: We found no association between KIV, WUV, and MCV antibody levels and incident lung cancer (P-corrected for multiple comparisons >0.10 for all trend tests). We also found no association with HPV-16, 18, 31, 33, 52, and 58 seropositivity (P-corrected for multiple comparisons >0.05 for all). CONCLUSIONS: Future studies of infectious etiologies of lung cancer should look beyond HPyVs and HPVs as candidate infectious agents. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-016-2381-3) contains supplementary material, which is available to authorized users

    Eucalyptus urograndis stem proteome is responsive to short-term cold stress

    Full text link
    Eucalyptus urograndis is a hybrid eucalyptus of major economic importance to the Brazilian pulp and paper industry. Although widely used in forest nurseries around the country, little is known about the biochemical changes imposed by environmental stress in this species. In this study, we evaluated the changes in the stem proteome after short-term stimulation by exposure to low temperature. Using two-dimensional gel electrophoresis coupled to high-resolution mass spectrometry-based protein identification, 12 proteins were found to be differentially regulated and successfully identified after stringent database searches against a protein database from a closely related species (Eucalyptus grandis). The identification of these proteins indicated that the E. urograndis stem proteome responded quickly to low temperature, mostly by down-regulating specific proteins involved in energy metabolism, protein synthesis and signaling. The results of this study represent the first step in understanding the molecular and biochemical responses of E. urograndis to thermal stress.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, BrazilDepartamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP, BrazilFAPESP: 2011/11650-0FAPESP: 2011/51949-5FAPESP: 2013/06370-4FAPESP: 2013/06352-6FAPESP: 2011/23582-

    Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis

    Get PDF
    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11103-015-0363-5) contains supplementary material, which is available to authorized users

    Arabidopsis thaliana Pollen Tube Culture for Multi-omics Studies

    No full text
    Pollen tubes have been key models to study plant cell wall elongation. Arabidopsis thaliana, although small, is a nice model, easy to grow and with a large set of studies to simplify result integration and interpretation. Pollen tubes may be used for gene expression essays, but also for biochemical characterization of the cell wall composition. However, pollen tube culture methods though seemingly straightforward have often a multitude of small technical details crucial for success, quickly deterring the more inexperienced and setting back experiments for months at the time. Here we propose a detailed method to set up easily a pollen tube culture routine in any lab, with a minimal set of equipment, to isolate and process pollen tubes for gene expression and/or cell wall biochemistry studies

    Unmasking viral sequences by metagenomic next-generation sequencing in adult human blood samples during steroid-refractory/dependent graft-versus-host disease

    No full text
    Viral infections are common complications following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients with steroid-refractory/dependent graft-versus-host disease (GvHD) are highly immunosuppressed and are more vulnerable to infections with weakly pathogenic or commensal viruses. Here, twenty-five adult allo-HSCT recipients from 2016 to 2019 with acute or chronic steroid-refractory/dependent GvHD were enrolled in a prospective cohort at Geneva University Hospitals. We performed metagenomics next-generation sequencing (mNGS) analysis using a validated pipeline and de novo analysis on pooled routine plasma samples collected throughout the period of intensive steroid treatment or second-line GvHD therapy to identify weakly pathogenic, commensal, and unexpected viruses
    corecore