743 research outputs found

    Neutrino mixing in Seesaw model

    Get PDF
    We study the neutrino mixing matrix (the MNS matrix) in the seesaw model. By assuming a large mass hierarchy for the heavy right-handed Majorana mass, we show that, in the diagonal Majorana base, the MNS matrix is determined by a unitary matrix, SS, which transforms the neutrino Yukawa matrix, yνy_{\nu}, into a triangular form, yy_{\triangle}. The mixing matrix of light leptons is VKMSV_{KM} S^{\prime *}, where VKMVLeVLνV_{KM} \equiv {V_{Le}}^{\dagger} V_{L \nu} %VLeV_{Le} and VLνV_{L\nu} diagonalize %the Yukawa matrices of charged leptons, %yeyey_e y_e^{\dagger}, and neutrinos, yνyνy_{\nu} y_{\nu}^{\dagger}, %respectively, and SVLνSS^{\prime *} \equiv {V_{L\nu}}^{\dagger} S^*. Large mixing may occur without fine tuning of the matrix elements of yy_{\triangle} even if the usual KM-like matrix VKMV_{KM} is given by VKM=1V_{KM} =1. This large mixing naturally may satisfy the experimental lower bound of the mixing implied by the atmospheric neutrino oscillation.Comment: 14 pages, 4 figures, PTPTe

    Thermal Restoration of Chiral Symmetry in Supersymmetric Nambu-Jona-Lasinio Model with Soft SUSY Breaking

    Get PDF
    The supersymmetric version of the Nambu-Jona-Lasinio model is investigated in connection with the chiral symmetry breaking induced by a soft SUSY breaking term. It is found that the broken chiral symmetry due to the soft breaking term is restored at suitably high temperature and the symmetry restoration occurs as first-order phase transitions. The critical temperature at which the chiral symmetry is restored is determined as a function of the strength of the soft breaking term and the field coupling constant. The dynamical fermion mass is calculated at finite temperature. Some possible applications to the breaking scenario of unified field theories are discussed.Comment: 9 pages, 2 figure

    Numerical study on the correlation between CP violation in neutrino oscillations and baryogenesis

    Full text link
    We numerically study the correlation between CP violation in the neutrino oscillations and baryogenesis in the seesaw model. In this study we get the heavy Majorana neutrino masses and lepton number asymmetries from their decays by fitting the data of neutrino oscillations and by working on some hypothesis of the Dirac-Yukawa term for neutrinos.Comment: 3 pages, 2 figures, Latex, presented at KEKTC5(Nov. 2001), to be published in Nucl. Phys. Proc. Supp

    Curvature-induced phase transitions in the inflationary universe - Supersymmetric Nambu-Jona-Lasinio Model in de Sitter spacetime -

    Get PDF
    The phase structure associated with the chiral symmetry is thoroughly investigated in de Sitter spacetime in the supersymmetric Nambu-Jona-Lasinio model with supersymmetry breaking terms. The argument is given in the three and four space-time dimensions in the leading order of the 1/N expansion and it is shown that the phase characteristics of the chiral symmetry is determined by the curvature of de Sitter spacetime. It is found that the symmetry breaking takes place as the first order as well as second order phase transition depending on the choice of the coupling constant and the parameter associated with the supersymmetry breaking term. The critical curves expressing the phase boundary are obtained. We also discuss the model in the context of the chaotic inflation scenario where topological defects (cosmic strings) develop during the inflation.Comment: 29 pages, 6 figures, REVTe

    A relation between CP violation of low energy and leptogenesis

    Get PDF
    We discuss how CP violation generating lepton number asymmetry can be related to CP violation in low energy.Comment: A poster Talk presented at KEKTC5, submitted to the proceeding

    A Model of Curvature-Induced Phase Transitions in Inflationary Universe

    Get PDF
    Chiral phase transitions driven by space-time curvature effects are investigated in de Sitter space in the supersymmetric Nambu-Jona-Lasinio model with soft supersymmetry breaking. The model is considered to be suitable for the analysis of possible phase transitions in inflationary universe. It is found that a restoration of the broken chiral symmetry takes place in two patterns for increasing curvature : the first order and second order phase transition respectively depending on initial settings of the four-body interaction parameter and the soft supersymmetry breaking parameter. The critical curves expressing the phase boundaries in these parameters are obtained. Cosmological implications of the result are discussed in connection with bubble formations and the creation of cosmic strings during the inflationary era.Comment: 12 pages, 3 figures, REVTe

    Mass Hierarchies and the Seesaw Neutrino Mixing

    Get PDF
    We give a general analysis of neutrino mixing in the seesaw mechanism with three flavors. Assuming that the Dirac and u-quark mass matrices are similar, we establish simple relations between the neutrino parameters and individual Majorana masses. They are shown to depend rather strongly on the physical neutrino mixing angles. We calculate explicitly the implied Majorana mass hierarchies for parameter sets corresponding to different solutions to the solar neutrino problem.Comment: 11 pages, no figures, replaced with final version. Minor corrections and one typo corrected. Added one referenc

    Space-time evolution induced by spinor fields with canonical and non-canonical kinetic terms

    Full text link
    We study spinor field theories as an origin to induce space-time evolution. Self-interacting spinor fields with canonical and non-canonical kinetic terms are considered in a Friedman-Robertson-Walker universe. The deceleration parameter is calculated by solving the equation of motion and the Friedman equation, simultaneously. It is shown that the spinor fields can accelerate and decelerate the universe expansion. To construct realistic models we discuss the contributions from the dynamical symmetry breaking.Comment: 16 pages, 19 figure
    corecore