530 research outputs found
Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model
In the chiral magnetic effect an imbalance in the number of left- and
right-handed quarks gives rise to an electromagnetic current parallel to the
magnetic field produced in noncentral heavy-ion collisions. The chiral
imbalance may be induced by topologically nontrivial gluon configurations via
the QCD axial anomaly, while the resulting electromagnetic current itself is a
consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain
limit is dual to large-N_c QCD, we discuss the proper implementation of the QED
axial anomaly, the (ambiguous) definition of chiral currents, and the
calculation of the chiral magnetic effect. We show that this model correctly
contains the so-called consistent anomaly, but requires the introduction of a
(holographic) finite counterterm to yield the correct covariant anomaly.
Introducing net chirality through an axial chemical potential, we find a
nonvanishing vector current only before including this counterterm. This seems
to imply the absence of the chiral magnetic effect in this model. On the other
hand, for a conventional quark chemical potential and large magnetic field,
which is of interest in the physics of compact stars, we obtain a nontrivial
result for the axial current that is in agreement with previous calculations
and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent
conductivity at the end of section 4; references added; version to appear in
JHE
Holographic Brownian Motion in Magnetic Environments
Using the gauge/gravity correspondence, we study the dynamics of a heavy
quark in two strongly-coupled systems at finite temperature: Super-Yang-Mills
in the presence of a magnetic field and non-commutative Super-Yang-Mills. In
the former, our results agree qualitatively with the expected behavior from
weakly-coupled theories. In the latter, we propose a Langevin equation that
accounts for the effects of non-commutativity and we find new interesting
features. The equation resembles the structure of Brownian motion in the
presence of a magnetic field and implies that the fluctuations along
non-commutative directions are correlated. Moreover, our results show that the
viscosity is smaller than the commutative case and that the diffusion
properties of the quark are unaffected by non-commutativity. Finally, we
compute the random force autocorrelator and verify that the
fluctuation-dissipation theorem holds in the presence of non-commutativity.Comment: 34 pages. v2: typos corrected. v3: title and abstract slightly
modified in order to better reflect the contents of the paper; footnote 3 and
one reference were also added; version accepted for publication in JHE
Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor
Most holographic models of superconducting systems neglect the effects of
dynamical boundary gauge fields during the process of spontaneous
symmetry-breaking. Usually a global symmetry gets broken. This yields a
superfluid, which then is gauged "weakly" afterwards. In this work we build
(and probe the dynamics of) a holographic model in which a local boundary
symmetry is spontaneously broken instead. We compute two-point functions of
dynamical non-Abelian gauge fields in the normal and in the broken phase, and
find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave
superconductor in (1+1) dimensions. The ground state of this model also breaks
(1+1)-dimensional parity spontaneously, while the Hamiltonian is
parity-invariant. We discuss possible implications of our results for a wider
class of holographic liquids.Comment: 32 pages, 12 figures; v3: string theory derivation of setup added
(section 3.1), improved presentation, version accepted by JHEP; v2: paragraph
added to discussion, figure added, references added, typos correcte
Chern-Simons diffusion rate in a holographic Yang-Mills theory
Using holography, we compute the Chern-Simons diffusion rate of 4d gauge
theories constructed by wrapping D4-branes on a circle. In the model with
antiperiodic boundary conditions for fermions, we find that it scales like
in the high-temperature phase. With periodic fermions, this scaling
persists at low temperatures. The scaling is reminiscent of 6d hydrodynamic
behavior even at temperatures small compared to compactification scales of the
M5-branes from which the D4-branes descend. We offer a holographic explanation
of this behavior by adding a new entry to the known map between D4 and M5
hydrodynamics, and suggest a field theory explanation based on "deconstruction"
or "fractionization".Comment: 13 pages, misstatement in published version about low temperature
phase removed, main results unaffecte
Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.
We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease
Stringy effects in black hole decay
We compute the low energy decay rates of near-extremal three(four) charge
black holes in five(four) dimensional N=4 string theory to sub-leading order in
the large charge approximation. This involves studying stringy corrections to
scattering amplitudes of a scalar field off a black hole. We adapt and use
recently developed techniques to compute such amplitudes as near-horizon
quantities. We then compare this with the corresponding calculation in the
microscopic configuration carrying the same charges as the black hole. We find
perfect agreement between the microscopic and macroscopic calculations; in the
cases we study, the zero energy limit of the scattering cross section is equal
to four times the Wald entropy of the black hole.Comment: 32 page
Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.
Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
Reaction rates and transport in neutron stars
Understanding signals from neutron stars requires knowledge about the
transport inside the star. We review the transport properties and the
underlying reaction rates of dense hadronic and quark matter in the crust and
the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of
Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes,
references updated, overview graphic added in the introduction, improvements
in Sec IV.A.
Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma
We extend our analysis of a IIB supergravity solution dual to a spatially
anisotropic finite-temperature N=4 super Yang-Mills plasma. The solution is
static, possesses an anisotropic horizon, and is completely regular. The full
geometry can be viewed as a renormalization group flow from an AdS geometry in
the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can
be equivalently understood as resulting from a position-dependent theta-term or
from a non-zero number density of dissolved D7-branes. The holographic stress
tensor is conserved and anisotropic. The presence of a conformal anomaly plays
an important role in the thermodynamics. The phase diagram exhibits homogeneous
and inhomogeneous (i.e. mixed) phases. In some regions the homogeneous phase
displays instabilities reminiscent of those of weakly coupled plasmas. We
comment on similarities with QCD at finite baryon density and with the
phenomenon of cavitation.Comment: 62 pages, 13 figures; v2: typos fixed, added reference
- …
