653 research outputs found
On the Nature of AX J2049.6+2939 and AX J2050.0+2914
AX J2049.6+2939 is a compact X-ray source in the vicinity of the southern
blow-up region of the Cygnus Loop supernova remnant (Miyata et al. 1998a). This
source was the brightest X-ray source inside the
Cygnus Loop observed during the ASCA survey project. The X-ray spectrum was
well fitted by a power-law function with a photon index of . Short-term timing analysis was performed and no coherent pulsation
was found. Follow-up observations with ASCA have revealed a large variation in
X-ray intensity by a factor of 50, whereas the spectral shape did not
change within the statistical uncertainties. In the second ASCA observation, we
found another X-ray source, AX J2050.0+2941, at the north east of AX
J2049.6+2939. During the three ASCA observations, the X-ray intensity of AX
J2050.0+2941 varied by a factor of 4. No coherent pulsations could be
found for AX J2050.0+2941.
We have performed optical photometric and spectroscopic observations in the
vicinity of AX J2049.6+2939 at the Kitt Peak National Observatory
(KPNO). As a result, all objects brighter than -band magnitude of 22 in
the error box can be identified with normal stars. Combined with the
X-ray results and the fact that there are no radio counterparts, AX
J2049.6+2939 is not likely to be either an ordinary rotation-powered pulsar
or an AGN. The nature of AX J2049.6+2939 is still unclear and further
observations over a wide energy band are strongly required.
As to AX J2050.0+2941, the long-term X-ray variability and the radio
counterpart suggests that it is an AGN.Comment: 23 pages, 4 figures, Accepted for publication by Astrophysical
Journa
The X-ray CCD camera of the MAXI Experiment on the ISS/JEM
MAXI, Monitor of All-sky X-ray Image, is the X-ray observatory on the
Japanese experimental module (JEM) Exposed Facility (EF) on the International
Space Station (ISS). MAXI is a slit scanning camera which consists of two kinds
of X-ray detectors: one is a one-dimensional position-sensitive proportional
counter with a total area of , the Gas Slit Camera (GSC), and
the other is an X-ray CCD array with a total area , the
Solid-state Slit Camera (SSC). The GSC subtends a field of view with an angular
dimension of 1 while the SSC subtends a field of view
with an angular dimension of 1 times a little less than 180. In
the course of one station orbit, MAXI can scan almost the entire sky with a
precision of 1 and with an X-ray energy range of 0.5-30 keV. We have
developed the engineering model of CCD chips and the analogue electronics for
the SSC. The energy resolution of EM CCD for Mn K has a full-width at
half maximum of 182 eV. Readout noise is 11 e^- rms.Comment: 10 pages, 4 figures Accepted for Nuclear Instruments and Method in
Physics Researc
Impact of prenatal environmental stress on cortical development
Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS) cells to demonstrate: 1. molecular mechanisms shared by various types of environmental stressors, 2. the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and 3. interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders
Proteome dynamics during postnatal mouse corpus callosum development.
Formation of cortical connections requires the precise coordination of numerous discrete phases. This is particularly significant with regard to the corpus callosum, whose development undergoes several dynamic stages including the crossing of axon projections, elimination of exuberant projections, and myelination of established tracts. To comprehensively characterize the molecular events in this dynamic process, we set to determine the distinct temporal expression of proteins regulating the formation of the corpus callosum and their respective developmental functions. Mass spectrometry-based proteomic profiling was performed on early postnatal mouse corpus callosi, for which limited evidence has been obtained previously, using stable isotope of labeled amino acids in mammals (SILAM). The analyzed corpus callosi had distinct proteomic profiles depending on age, indicating rapid progression of specific molecular events during this period. The proteomic profiles were then segregated into five separate clusters, each with distinct trajectories relevant to their intended developmental functions. Our analysis both confirms many previously-identified proteins in aspects of corpus callosum development, and identifies new candidates in understudied areas of development including callosal axon refinement. We present a valuable resource for identifying new proteins integral to corpus callosum development that will provide new insights into the development and diseases afflicting this structure
Can we live on a D-brane? -- Effective theory on a self-gravitating D-brane --
We consider a D-brane coupled with gravity in type IIB supergravity on S^5
and derive the effective theory on the D-brane in two different ways, that is,
holographic and geometrical projection methods. We find that the effective
equations on the brane obtained by these methods coincide. The theory on the
D-brane described by the Born-Infeld action is not like Einstein-Maxwell theory
in the lower order of the gradient expansion, i.e., the Maxwell field does not
appear in the theory. Thus the careful analysis and statement for cosmology on
self-gravitating D-brane should be demanded in realistic models.Comment: 13 pages, accepted for publication in Physical Review
Have we already detected astrophysical symptoms of space-time noncommutativity ?
We discuss astrophysical implications of -Minkowski space-time, in
which there appears space-time noncommutativity. We first derive a velocity
formula for particles based on the motion of a wave packet. The result is that
a massless particle moves at a constant speed as in the usual Minkowski
space-time, which implies that an arrival time analysis by -rays from
Markarian (Mk) 421 does not exclude space-time noncommutativity. Based on this
observation, we analyze reaction processes in -Minkowski space-time
which are related to the puzzling detections of extremely high-energy cosmic
rays above the Greisen-Zatsepin-Kuzmin cutoff and of high-energy (20 TeV)
-rays from Mk 501.Comment: 10 pages, 6 figures, submitted to PRD, corrected some mistake
DECIGO pathfinder
DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article
Clinical Significance of Serum Ornithine Carbamoyltransferase in Liver Diseases – Is the Ratio of OCT/ALT a New Tumor Marker?
J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and
62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields
are presented as a function of both collision centrality and transverse
momentum. Nuclear modifications are obtained for central relative to peripheral
Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative
to scaled p+p cross sections obtained from other measurements (R_AA). The
observed suppression patterns at 39 and 62.4 GeV are quite similar to those
previously measured at 200 GeV. This similar suppression presents a challenge
to theoretical models that contain various competing mechanisms with different
energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects
The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p
collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX
experiment at the Relativistic Heavy-Ion Collider. Cross sections for the
inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per
binary collision for d+Au collisions relative to those in p+p collisions
(R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going
direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going
direction. The measured results are compared to a nuclear-shadowing model,
EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section,
sigma_br, and compared to lower energy p+A results. We also compare the results
to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity
dependence of the observed Upsilon suppression is consistent with lower energy
p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
