411 research outputs found
An Inexact Primal-Dual Smoothing Framework for Large-Scale Non-Bilinear Saddle Point Problems
We develop an inexact primal-dual first-order smoothing framework to solve a
class of non-bilinear saddle point problems with primal strong convexity.
Compared with existing methods, our framework yields a significant improvement
over the primal oracle complexity, while it has competitive dual oracle
complexity. In addition, we consider the situation where the primal-dual
coupling term has a large number of component functions. To efficiently handle
this situation, we develop a randomized version of our smoothing framework,
which allows the primal and dual sub-problems in each iteration to be solved by
randomized algorithms inexactly in expectation. The convergence of this
framework is analyzed both in expectation and with high probability. In terms
of the primal and dual oracle complexities, this framework significantly
improves over its deterministic counterpart. As an important application, we
adapt both frameworks for solving convex optimization problems with many
functional constraints. To obtain an -optimal and
-feasible solution, both frameworks achieve the best-known oracle
complexities (in terms of their dependence on )
Recommended from our members
A review of the introduced smooth-billed ani Crotophaga ani in Galápagos
The smooth-billed ani (Crotophaga ani) is a widespread introduced bird species in the biologically important archipelago of Galápagos. Many scientists and local people consider it to be a damaging invasive, and it is possible that it impacts native species and ecosystems via multiple mechanisms. However, evidence for this is largely anecdotal and research on smooth-billed anis in Galápagos is limited. Despite this, there have been repeated attempts to control or eradicate the population over the past few decades, all without long-term success. These attempts continue, but no official plan of action regarding this species currently exists.This review brings together all available information on smooth-billed anis in Galápagos. We use both published and unpublished research to answer the following questions:1.What is known about the history of the smooth-billed anis' introduction to Galápagos?2.What are the possible impacts of smooth-billed anis in Galápagos?3.What attempts have been undertaken to control or eradicate smooth-billed anis in Galápagos and what were their outcomes?In answering these questions, we highlight numerous knowledge gaps, in both the current understanding of the impacts of this introduced species and the effectiveness of potential control or eradication methods. We find an urgent need for further research before considered, resource-efficient decisions can be made regarding smooth-billed anis in Galápagos
Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target
Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment. Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the tumor microenvironment and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that tumor microenvironment is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including anti-tumor agents with those targeting stromal cell metabolism, anti-angiogenic drugs and/or immunotherapy are being developed as promising therapeutics.Mª Carmen Ocaña is recipient of a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sport. Supported by grants BIO2014-56092-R (MINECO and FEDER), P12-CTS-1507 (Andalusian Government and FEDER) and funds from group BIO-267 (Andalusian Government). The "CIBER de Enfermedades Raras" is an initiative from the ISCIII (Spain). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript
Alternative farrowing systems: design criteria for farrowing systems based on the biological needs of sows and piglets
The construction of a suitable farrowing environment is a continuing dilemma: the piglet's needs must be matched with those of the sow and the farmer during the main phases that constitute farrowing: nest building, parturition and lactation. Difficulties exist in resolving the various conflicts of interest between and within these three parties (e. g. sow v. farmer: space needed for nest building v. space needed to maximise the amount of farrowing accommodation, or sow v. sow: ensuring the survival of the current litter v. maintaining condition for future litters). Thus, the challenge is to resolve these conflicts and design a system that maximises sow and piglet welfare while maintaining an economically efficient and sustainable enterprise. In order to successfully design a farrowing and lactation environment, it is necessary to consider the biological needs of both the sow and her litter. The natural behaviour of the sow has been well documented and very little variation exists between reports of peri-parturient behaviour observed in extensively kept domestic sows and their wild counterparts. The failure for domestication to significantly alter these behavioural patterns provides evidence that they are biologically significant and that the commercial farrowing environment should attempt to accommodate this behavioural repertoire. In addition, the behavioural needs of the piglets, as well as the physiological needs of both sows and their offspring should be considered. This article aims to review the considerable body of literature detailing the behavioural repertoire of sows and their offspring during the different phases of farrowing, and the accompanying physiological processes. The focus is on identifying biological needs of the animals involved in order to synthesise the appropriate design criteria for farrowing and lactation systems, which should optimise both welfare and animal production.</p
2D characterization of near-surface V P/V S: surface-wave dispersion inversion versus refraction tomography
International audienceThe joint study of pressure (P-) and shear (S-) wave velocities (Vp and Vs ), as well as their ratio (Vp /Vs), has been used for many years at large scales but remains marginal in near-surface applications. For these applications, and are generally retrieved with seismic refraction tomography combining P and SH (shear-horizontal) waves, thus requiring two separate acquisitions. Surface-wave prospecting methods are proposed here as an alternative to SH-wave tomography in order to retrieve pseudo-2D Vs sections from typical P-wave shot gathers and assess the applicability of combined P-wave refraction tomography and surface-wave dispersion analysis to estimate Vp/Vs ratio. We carried out a simultaneous P- and surface-wave survey on a well-characterized granite-micaschists contact at Ploemeur hydrological observatory (France), supplemented with an SH-wave acquisition along the same line in order to compare Vs results obtained from SH-wave refraction tomography and surface-wave profiling. Travel-time tomography was performed with P- and SH- wave first arrivals observed along the line to retrieve Vtomo p and Vtomo s models. Windowing and stacking techniques were then used to extract evenly spaced dispersion data from P-wave shot gathers along the line. Successive 1D Monte Carlo inversions of these dispersion data were performed using fixed Vp values extracted from Vtomo p the model and no lateral constraints between two adjacent 1D inversions. The resulting 1D Vsw s models were then assembled to create a pseudo-2D Vsw s section, which appears to be correctly matching the general features observed on the section. If the pseudo-section is characterized by strong velocity incertainties in the deepest layers, it provides a more detailed description of the lateral variations in the shallow layers. Theoretical dispersion curves were also computed along the line with both and models. While the dispersion curves computed from models provide results consistent with the coherent maxima observed on dispersion images, dispersion curves computed from models are generally not fitting the observed propagation modes at low frequency. Surface-wave analysis could therefore improve models both in terms of reliability and ability to describe lateral variations. Finally, we were able to compute / sections from both and models. The two sections present similar features, but the section obtained from shows a higher lateral resolution and is consistent with the features observed on electrical resistivity tomography, thus validating our approach for retrieving Vp/Vs ratio from combined P-wave tomography and surface-wave profiling
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
The effect of two different health messages on physical activity levels and health in sedentary overweight, middle-aged women
Background: Most public health guidelines recommend that adults need to participate in 30 minutes of moderate intensity physical activity on most days of the week to maintain good health. Achieving the recommended 30 minutes of exercise a day can be difficult in middle aged, overweight women. This 12 week study evaluated whether a 10,000 steps per day message was more effective than a 30 minutes a day message in increasing physical activity in low active, overweight women. Methods: Thirty participants were randomized into 2 groups: Group 1 was asked to undertake 30 minutes of walking/day, whereas Group 2 was asked to accumulate 10,000 steps/day using their pedometers. Results: Results showed that there were no changes in anthropometric and blood pressure measures between or within groups. However, the 10,000 step and the 30 minutes groups’ daily average number of steps/day were significantly higher than baseline at week 6 (p = 0.038 and p = 0.039 respectively) and at week 12 (p = 0.028 and p = 0.038 respectively). At week 12, the 10,000 steps group were taking an average of 4616 steps per day more (43% increase) than at baseline and the 30 minutes group were taking an average of 2761 steps per day more (35% increase) than at baseline. There was a significant difference in the number of steps with the 10,000 steps group versus 30 minutes group at 12 weeks (p = 0.045).Conclusions: This study found that low active, overweight women undertook significantly more physical activity when they had a daily 10,000 step goal using a pedometer, than when they were asked to achieve 30 minutes of walking/day. Therefore we suggest that a public health recommendation of “10,000 steps/day”, rather than the “30 min/day” could be applied to promote increased physical activity in sedentary middle aged women
Spin and quadrupole contributions to the motion of astrophysical binaries
Compact objects in general relativity approximately move along geodesics of
spacetime. It is shown that the corrections to geodesic motion due to spin
(dipole), quadrupole, and higher multipoles can be modeled by an extension of
the point mass action. The quadrupole contributions are discussed in detail for
astrophysical objects like neutron stars or black holes. Implications for
binaries are analyzed for a small mass ratio situation. There quadrupole
effects can encode information about the internal structure of the compact
object, e.g., in principle they allow a distinction between black holes and
neutron stars, and also different equations of state for the latter.
Furthermore, a connection between the relativistic oscillation modes of the
object and a dynamical quadrupole evolution is established.Comment: 43 pages. Proceedings of the 524. WE-Heraeus-Seminar "Equations of
Motion in Relativistic Gravity". v2: fixed reference. v3: corrected typos in
eqs. (1), (57), (85
Investigating the effect of a 3-month workplace-based pedometer-driven walking programme on health-related quality of life in meat processing workers: a feasibility study within a randomized controlled trial
A Combination of Nootropic Ingredients (CAF+) Is Not Better than Caffeine in Improving Cognitive Functions
- …
