4,490 research outputs found
Being, doing, and play: A theoretical and clinical exploration
This paper explores the metonymy of the following aphorism, delivered by Winnicott in a 1967 lecture: “From being comes doing, but there can be no do before be.” (1970, p. 25, emphasis in original). This aphorism has been little discussed or explored in the literature, but Winnicott articulated similar ideas in his more academic papers (e.g., 1965, 1970). These similar communications about being and doing will be examined alongside more contemporary thinking about the ideas to which Winnicott alludes in this aphorism; works by Benjamin (1988) and Akhtar (2000) in particular will be brought to bear on the subject. Two case studies will then be discussed, in order to examine the clinical implications of the theoretical discussion. Ultimately, such exploration will substantiate the claim that, through the metonymy of being and doing, Winnicott was alluding to a “statement of human nature” that he published just 3 years later (1970, p. 2). Winnicott’s own concept of play will then be posited as a critical, third element comprising “the life of a human being,” which will serve to situate the discussion within a contemporary, relational framework (1970, p. 2)
The Spin Distribution of Fast Spinning Neutron Stars in Low Mass X-Ray Binaries: Evidence for Two Sub-Populations
We study the current sample of rapidly rotating neutron stars in both
accreting and non-accreting binaries in order to determine whether the spin
distribution of accreting neutron stars in low-mass X-ray binaries can be
reconciled with current accretion torque models. We perform a statistical
analysis of the spin distributions and show that there is evidence for two
sub-populations among low-mass X-ray binaries, one at relatively low spin
frequency, with an average of ~300 Hz and a broad spread, and a peaked
population at higher frequency with average spin frequency of ~575 Hz. We show
that the two sub-populations are separated by a cut-point at a frequency of
~540 Hz. We also show that the spin frequency of radio millisecond pulsars does
not follow a log-normal distribution and shows no evidence for the existence of
distinct sub-populations. We discuss the uncertainties of different accretion
models and speculate that either the accreting neutron star cut-point marks the
onset of gravitational waves as an efficient mechanism to remove angular
momentum or some of the neutron stars in the fast sub-population do not evolve
into radio millisecond pulsars.Comment: Submitted to Ap
Recommended from our members
Changes in epithelial secretory cells and potentiation of neurogenic inflammation in the trachea of rats with respiratory tract infections.
In rats respiratory tract infections due to Sendai virus and coronavirus usually are transient, but they can have long-lasting consequences when accompanied by Mycoplasma pulmonis infections. Morphological alterations in the tracheal epithelium and a potentiation of the inflammatory response evoked by sensory nerve stimulation ("neurogenic inflammation") are evident nine weeks after the infections begin, but the extent to which these changes are present at earlier times is not known. In the present study we characterized these abnormalities in the epithelium and determined the extent to which they are present 3 and 6 weeks after the infections begin. We also determined the magnitude of the potentiation of neurogenic inflammation at these times, whether the potentiation can be reversed by glucocorticoids, and whether a proliferation of blood vessels contributes to the abnormally large amount of plasma extravasation associated with this potentiation. To this end, we studied Long-Evans rats that acquired these viral and mycoplasmal infections from other rats. We found that the tracheal epithelium of the infected rats had ten times as many Alcian blue-PAS positive mucous cells as did that of pathogen-free rats; but it contained none of the serous cells typical of pathogen-free rats, so the total number of secretory cells was not increased. In addition, the epithelium of the infected rats had three times the number of ciliated cells and had only a third of the number of globule leukocytes. In response to an injection of capsaicin (150 micrograms/kg i.v.), the tracheas of the infected rats developed an abnormally large amount of extravasation of two tracers, Evans blue dye and Monastral blue pigment, and had an abnormally large number of Monastral blue-labeled venules, particularly in regions of mucosa overlying the cartilaginous rings. This abnormally large amount of extravasation was blocked by dexamethasone (1 mg/day i.p. for 5 days). We conclude that M. pulmonis infections, exacerbated at the outset by viral infections, result within three weeks in the transformation of epithelial serous cells into mucous cells, the proliferation of ciliated cells, and the depletion of globule leukocytes. They also cause a proliferation of mediator-sensitive blood vessels in the airway mucosa, which is likely to contribute to the potentiation of neurogenic inflammation that accompanies these infections
Dynamical mean-filed approximation to small-world networks of spiking neurons: From local to global, and/or from regular to random couplings
By extending a dynamical mean-field approximation (DMA) previously proposed
by the author [H. Hasegawa, Phys. Rev. E {\bf 67}, 41903 (2003)], we have
developed a semianalytical theory which takes into account a wide range of
couplings in a small-world network. Our network consists of noisy -unit
FitzHugh-Nagumo (FN) neurons with couplings whose average coordination number
may change from local () to global couplings () and/or
whose concentration of random couplings is allowed to vary from regular
() to completely random (p=1). We have taken into account three kinds of
spatial correlations: the on-site correlation, the correlation for a coupled
pair and that for a pair without direct couplings. The original -dimensional {\it stochastic} differential equations are transformed to
13-dimensional {\it deterministic} differential equations expressed in terms of
means, variances and covariances of state variables. The synchronization ratio
and the firing-time precision for an applied single spike have been discussed
as functions of and . Our calculations have shown that with increasing
, the synchronization is {\it worse} because of increased heterogeneous
couplings, although the average network distance becomes shorter. Results
calculated by out theory are in good agreement with those by direct
simulations.Comment: 19 pages, 2 figures: accepted in Phys. Rev. E with minor change
IUE observations of Fe 2 galaxies
Repeated observations of the Seyfert 1 galaxies I Zw 1 and II Zw 136, which have very strong Fe II emission lines in the optical region, were made at low resolution with the IUE Satellite. The ultraviolet spectra are very similar: both are variable and show broad emission features of Fe II (especially the UV multiplets 1, 33, 60, 62, and 63) as well as the emission lines usually strong in Seyferts and quasars. The data strongly support the hypothesis that the optical Fe II emission lines are primarily due to collisional excitation and that resonance fluorescence makes only a minor contribution to the excitation of these lines
Gravitational waves from rapidly rotating neutron stars
Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed
as an interesting source of gravitational waves. In this chapter we present
estimates of the gravitational wave emission for various scenarios, given the
(electromagnetically) observed characteristics of these systems. First of all
we focus on the r-mode instability and show that a 'minimal' neutron star model
(which does not incorporate exotica in the core, dynamically important magnetic
fields or superfluid degrees of freedom), is not consistent with observations.
We then present estimates of both thermally induced and magnetically sustained
mountains in the crust. In general magnetic mountains are likely to be
detectable only if the buried magnetic field of the star is of the order of
G. In the thermal mountain case we find that gravitational
wave emission from persistent systems may be detected by ground based
interferometers. Finally we re-asses the idea that gravitational wave emission
may be balancing the accretion torque in these systems, and show that in most
cases the disc/magnetosphere interaction can account for the observed spin
periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the
Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert
Gravitational wave emission from a magnetically deformed non-barotropic neutron star
A strong candidate for a source of gravitational waves is a highly
magnetised, rapidly rotating neutron star (magnetar) deformed by internal
magnetic stresses. We calculate the mass quadrupole moment by perturbing a
zeroth-order hydrostatic equilibrium by an axisymmetric magnetic field with a
\emph{linked poloidal-toroidal structure}. In this work, we do \emph{not}
require the model star to obey a barotropic equation of state (as a realistic
neutron star is not barotropic), allowing us to explore the hydromagnetic
equilibria with fewer constraints. We derive the relation between the ratio of
poloidal-to-total field energy and ellipticity and briefly
compare our results to those obtained using the barotropic assumption. Then, we
present some examples of how our results can be applied to astrophysical
contexts. First, we show how our formulae, in conjunction with current
gravitational wave (non-)detections of the Crab pulsar and the Cassiopeia A
central compact object (Cas A CCO), can be used to constrain the strength of
the internal toroidal fields of those objects. We find that, for the Crab
pulsar (whose canonical equatorial dipole field strength, inferred from spin
down, is T) to emit detectable gravitational radiation, the
neutron star must have a strong toroidal field component, with maximum internal
toroidal field strength T; for gravitational
waves to be detected from the Cas A CCO at 300 Hz, T, whereas detection at 100 Hz would require T. Using our results, we also show how the gravitational wave signal
emitted by a magnetar immediately after its birth (assuming it is born rapidly
rotating, with ) makes such a newborn magnetar a stronger
candidate for gravitational wave detection than, for example, an SGR giant
flare.Comment: 15 pages, 8 figures, 2 table
Generalized Rate-Code Model for Neuron Ensembles with Finite Populations
We have proposed a generalized Langevin-type rate-code model subjected to
multiplicative noise, in order to study stationary and dynamical properties of
an ensemble containing {\it finite} neurons. Calculations using the
Fokker-Planck equation (FPE) have shown that owing to the multiplicative noise,
our rate model yields various kinds of stationary non-Gaussian distributions
such as gamma, inverse-Gaussian-like and log-normal-like distributions, which
have been experimentally observed. Dynamical properties of the rate model have
been studied with the use of the augmented moment method (AMM), which was
previously proposed by the author with a macroscopic point of view for
finite-unit stochastic systems. In the AMM, original -dimensional stochastic
differential equations (DEs) are transformed into three-dimensional
deterministic DEs for means and fluctuations of local and global variables.
Dynamical responses of the neuron ensemble to pulse and sinusoidal inputs
calculated by the AMM are in good agreement with those obtained by direct
simulation. The synchronization in the neuronal ensemble is discussed.
Variabilities of the firing rate and of the interspike interval (ISI) are shown
to increase with increasing the magnitude of multiplicative noise, which may be
a conceivable origin of the observed large variability in cortical neurons.Comment: 19 pages, 9 figures, accepted in Phys. Rev. E after minor
modification
- …
