5,637 research outputs found
The effect of military load carriage on ground reaction forces
Load carriage is an inevitable part of military life both during training and operations. Loads carried are frequently as high as 60% bodyweight, and this increases injury risk. In the military, load is carried in a backpack (also referred to as a Bergen) and webbing, these combined form a load carriage system (LCS). A substantial body of literature exists recording the physiological effects of load carriage; less is available regarding the biomechanics. Previous biomechanical studies have generally been restricted to loads of 20% and 40% of bodyweight, usually carried in the backpack alone. The effect of rifle carriage on gait has also received little or no attention in the published literature. This is despite military personnel almost always carrying a rifle during load carriage. In this study, 15 male participants completed 8 conditions: military boot, rifle, webbing 8 and 16 kg, backpack 16 kg and LCS 24, 32 and 40 kg. Results showed that load added in 8 kg increments elicited a proportional increase in vertical and anteroposterior ground reaction force (GRF) parameters. Rifle carriage significantly increased the impact peak and mediolateral impulse compared to the boot condition. These effects may be the result of changes to the vertical and horizontal position of the body's centre of mass, caused by the restriction of natural arm swing patterns. Increased GRFs, particularly in the vertical axis, have been positively linked to overuse injuries. Therefore, the biomechanical analysis of load carriage is important in aiding our understanding of injuries associated with military load carriage
Subjective skeletal discomfort measured using a comfort questionnaire following a load carriage exercise
Objective: Limited research has been conducted into the effect of load carriage on discomfort and injuries. This study aimed to determine the skeletal discomfort for part-time soldiers who completed a 1-hour field march carrying 24 kg.
Methods: A postmarch comfort questionnaire was completed by 127 participants, with exercise withdrawals and postmarch injuries also recorded.
Results: The foot was subjectively rated as the most uncomfortable skeletal region. Females reported hip discomfort to be significantly greater than males. The military experience of participants had no difference on the mean perceived comfort ratings of any of the measured regions. Finally, only one participant withdrew from the exercise, with no participants reporting a load carriage injury in the 2 to 3 days proceeding the exercise Conclusions: This study concludes that although a 1-hour period of load carriage causes noteworthy discomfort it is not sufficient to result in noncompletion of a military exercise or cause injury
Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease
Extragalactic Radio Sources and the WMAP Cold Spot
We detect a dip of 20-45% in the surface brightness and number counts of NVSS
sources smoothed to a few degrees at the location of the WMAP cold spot. The
dip has structure on scales of approximately 1-10 degrees. Together with
independent all-sky wavelet analyses, our results suggest that the dip in
extragalactic brightness and number counts and the WMAP cold spot are
physically related, i.e., that the coincidence is neither a statistical anomaly
nor a WMAP foreground correction problem. If the cold spot does originate from
structures at modest redshifts, as we suggest, then there is no remaining need
for non-Gaussian processes at the last scattering surface of the CMB to explain
the cold spot. The late integrated Sachs-Wolfe effect, already seen
statistically for NVSS source counts, can now be seen to operate on a single
region. To create the magnitude and angular size of the WMAP cold spot requires
a ~140 Mpc radius completely empty void at z<=1 along this line of sight. This
is far outside the current expectations of the concordance cosmology, and adds
to the anomalies seen in the CMB.Comment: revised version, ApJ, in pres
Novel expression of Haemonchus contortus vaccine candidate aminopeptidase H11 using the free-living nematode Caenorhabditis elegans
With the problem of parasitic nematode drug resistance increasing, vaccine development offers an alternative sustainable control approach. For some parasitic nematodes, native extracts enriched for specific proteins are highly protective. However, recombinant forms of these proteins have failed to replicate this protection. This is thought to be due to differences in glycosylation and/or conformation between native and recombinant proteins. We have exploited the free-living nematode Caenorhabditis elegans to examine its suitability as an alternative system for recombinant expression of parasitic nematode vaccine candidates. We focussed on Haemonchus contortus aminopeptidase H11 glycoprotein, which is enriched in a gut membrane fraction capable of inducing significant protection against this important ovine gastrointestinal nematode. We show that H. contortus H11 expressed in C. elegans is enzymatically active and MALDI mass spectrometry identifies similar di- and tri-fucosylated structures to those on native H11, with fucose at the 3- and/or 6-positions of the proximal GlcNAc. Some glycan structural differences were observed, such as lack of LDNF. Serum antibody to native H11 binds to C. elegans recombinant H11 and most of the antibody to rH11 or native H11 is directed to glycan moieties. Despite these similarities, no reduction in worm burden or faecal egg count was observed following immunisation of sheep with C. elegans-expressed recombinant H11 protein. The findings suggest that the di- and tri-fucosylated N-glycans expressed on rH11 do not contribute to the protective effect of H11 and that additional components present in native H11-enriched extract are likely required for enhancing the antibody response necessary for protection
A radio continuum survey of the southern sky at 1420 MHz. Observations and data reduction
We describe the equipment, observational method and reduction procedure of an
absolutely calibrated radio continuum survey of the South Celestial Hemisphere
at a frequency of 1420 MHz. These observations cover the area 0h < R.A. < 24h
for declinations less than -10 degree. The sensitivity is about 50 mK T_B (full
beam brightness) and the angular resolution (HPBW) is 35.4', which matches the
existing northern sky survey at the same frequency.Comment: 9 pages with 9 figures, A&A, in pres
Global 21cm signal experiments: a designer's guide
[Abridged] The spatially averaged global spectrum of the redshifted 21cm line
has generated much experimental interest, for it is potentially a direct probe
of the Epoch of Reionization and the Dark Ages. Since the cosmological signal
here has a purely spectral signature, most proposed experiments have little
angular sensitivity. This is worrisome because with only spectra, the global
21cm signal can be difficult to distinguish from foregrounds such as Galactic
synchrotron radiation, as both are spectrally smooth and the latter is orders
of magnitude brighter. We establish a mathematical framework for global signal
data analysis in a way that removes foregrounds optimally, complementing
spectra with angular information. We explore various experimental design
trade-offs, and find that 1) with spectral-only methods, it is impossible to
mitigate errors that arise from uncertainties in foreground modeling; 2)
foreground contamination can be significantly reduced for experiments with fine
angular resolution; 3) most of the statistical significance in a positive
detection during the Dark Ages comes from a characteristic high-redshift trough
in the 21cm brightness temperature; and 4) Measurement errors decrease more
rapidly with integration time for instruments with fine angular resolution. We
show that if observations and algorithms are optimized based on these findings,
an instrument with a 5 degree beam can achieve highly significant detections
(greater than 5-sigma) of even extended (high Delta-z) reionization scenarios
after integrating for 500 hrs. This is in contrast to instruments without
angular resolution, which cannot detect gradual reionization. Abrupt ionization
histories can be detected at the level of 10-100's of sigma. The expected
errors are also low during the Dark Ages, with a 25-sigma detection of the
expected cosmological signal after only 100 hrs of integration.Comment: 34 pages, 30 figures. Replaced (v2) to match accepted PRD version
(minor pedagogical additions to text; methods, results, and conclusions
unchanged). Fixed two typos (v3); text, results, conclusions etc. completely
unchange
Separation of foregrounds from cosmic microwave background observations with the MAP satellite
Simulated observations of a 10\dg \times 10\dg field by the Microwave
Anisotropy Probe (MAP) are analysed in order to separate cosmic microwave
background (CMB) emission from foreground contaminants and instrumental noise
and thereby determine how accurately the CMB emission can be recovered. The
simulations include emission from the CMB, the kinetic and thermal
Sunyaev-Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust,
free-free and synchrotron. We find that, even in the presence of these
contaminating foregrounds, the CMB map is reconstructed with an rms accuracy of
about 20 K per 12.6 arcmin pixel, which represents a substantial
improvement as compared to the individual temperature sensitivities of the raw
data channels. We also find, for the single 10\dg \times 10\dg field, that
the CMB power spectrum is accurately recovered for \ell \la 600.Comment: 7 pages, 7 figures, MNRAS submitte
Does tiny-scale atomic structure exist in the interstellar medium ?
We report on preliminary results from the recent multi-epoch neutral hydrogen
absorption measurements toward three pulsars, B0823+26, B1133+16 and B2016+28,
using the Arecibo telescope. We do not find significant variations in optical
depth profiles over periods of 0.3 and 9--10 yr, or on spatial scales of 10--20
and 70--85 AU. The large number of non detections of the tiny scale atomic
structure suggests that the AU-sized structure is not ubiquitous in the
interstellar medium and could be quite a rare phenomenon.Comment: Accepted by ApJ Letters, 5 pages, 2 figure
- …
