7 research outputs found
Confined magnon dispersion in ferromagnetic and antiferromagnetic thin films in a second quantization approach: the case of Fe and NiO
We present a methodology based on the calculation of the inelastic scattering
from magnons via the spin scattering function in confined geometries such as
thin films using a second quantization formalism, for both ferromagnetic and
antiferromagnetic materials. The case studies are chosen with an aim to
demonstrate the effects of film thickness and crystal orientation on magnon
modes, using bcc Fe(100) and NiO with (100) and (111) crystallographic
orientations as prototypical systems. Due to the quantization of the
quasi-momentum we observe a granularity in the inelastic spectra in the
reciprocal space path reflecting the orientation of the thin film. This
approach also allows to capture softer modes that appear due to the partial
interaction of magnetic moments close to the surface in a thin film geometry,
in addition to bulk modes. The softer modes are also affected by
crystallographic orientations as illustrated by the different surface-related
peaks of NiO magnon density of states at approximately ~ 65 meV for (100) and ~
42 meV for (111). Additionally, we explore the role of anisotropy on magnon
modes, revealing that introducing anisotropy to both Fe and NiO films increases
the overall hardness of the magnon modes. The introduction of a surface
anisotropy produces a shift of the surface-related magnon DOS peak to higher
energies with increased surface anisotropy, and in some cases leading to
surface confined mode
Theory of momentum-resolved magnon electron energy loss spectra: The case of Yttrium Iron Garnet
We explore the inelastic spectra of electrons impinging in a magnetic system.
The methodology here presented is intended to highlight the charge-dependent
interaction of the electron beam in a STEM-EELS experiment, and the local
vector potential generated by the magnetic lattice. This interaction shows an
intensity smaller than the purely spin interaction, which is taken to
be functionally the same as in the inelastic neutron experiment. On the other
hand, it shows a strong scattering vector dependence () and a
dependence with the relative orientation between the probe wavevector and the
local magnetic moments of the solid. We present YIG as a case study due to its
high interest by the community
Confined magnon dispersion in ferromagnetic and antiferromagnetic thin films in a second quantization approach:The case of Fe and NiO
We present a methodology based on the calculation of the inelastic scattering from magnons via the spin-scattering function in confined geometries such as thin films using a second quantization formalism, for both ferromagnetic and antiferromagnetic materials. The case studies are chosen with an aim to demonstrate the effects of film thickness and crystal orientation on magnon modes, using bcc Fe(100) and NiO with (100) and (111) crystallographic orientations as prototypical systems. Due to the quantization of the quasimomentum, we observe a granularity in the inelastic spectra in the reciprocal space path reflecting the orientation of the thin film. This approach also allows for the capture of softer modes that appear due to the partial interaction of magnetic moments close to the surface in a thin film geometry, in addition to bulk modes. The softer modes are also affected by crystallographic orientation, as illustrated by the different surface-related peaks of the NiO magnon density of states at approximately ∼65meV for (100) and ∼42meV for a (111)-oriented film. Additionally, we explore the role of anisotropy, revealing that anisotropy increases the overall hardness of the magnon modes. The introduction of a surface anisotropy produces a shift of the surface-related magnon DOS peak to higher energies with increased surface anisotropy, and in some cases leads to a surface-confined mode
First principles methods using CASTEP.
Abstract. The CASTEP code for first principles electronic structure calculations will be described. A brief, nontechnical overview will be given and some of the features and capabilities highlighted. Some features which are unique to CASTEP will be described and near-future development plans outlined
Simultaneous Prediction of the Magnetic and Crystal Structure of Materials Using a Genetic Algorithm
We introduce a number of extensions and enhancements to a genetic algorithm for crystal structure prediction, to make it suitable to study magnetic systems. The coupling between magnetic properties and crystal structure means that it is essential to take a holistic approach, and we present for the first time, a genetic algorithm that performs a simultaneous global optimisation of both magnetic structure and crystal structure. We first illustrate the power of this approach on a novel test system—the magnetic Lennard–Jones potential—which we define. Then we study the complex interface structures found at the junction of a Heusler alloy and a semiconductor substrate as found in a proposed spintronic device and show the impact of the magnetic interface structure on the device performance.</jats:p
Reproducibility in density functional theory calculations of solids
The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements
