1,686 research outputs found
Modeling and Estimation for Real-Time Microarrays
Microarrays are used for collecting information about a large number of different genomic particles simultaneously. Conventional fluorescent-based microarrays acquire data after the hybridization phase. During this phase, the target analytes (e.g., DNA fragments) bind to the capturing probes on the array and, by the end of it, supposedly reach a steady state. Therefore, conventional microarrays attempt to detect and quantify the targets with a single data point taken in the steady state. On the other hand, a novel technique, the so-called real-time microarray, capable of recording the kinetics of hybridization in fluorescent-based microarrays has recently been proposed. The richness of the information obtained therein promises higher signal-to-noise ratio, smaller estimation error, and broader assay detection dynamic range compared to conventional microarrays. In this paper, we study the signal processing aspects of the real-time microarray system design. In particular, we develop a probabilistic model for real-time microarrays and describe a procedure for the estimation of target amounts therein. Moreover, leveraging on system identification ideas, we propose a novel technique for the elimination of cross hybridization. These are important steps toward developing optimal detection algorithms for real-time microarrays, and to understanding their fundamental limitations
ML Estimation of DNA Initial Copy Number in Polymerase Chain Reaction (PCR) Processes
Estimation of DNA copy number in a given biological sample is an extremely important problem in genomics. This problem is especially challenging when the number of the DNA strands is minuscule, which is often the case in applications such as pathogen and genetic mutation detection. A recently developed technique, real-time polymerase chain reaction (PCR), amplifies the number of initial target molecules by replicating them through a series of thermal cycles. Ideally, the number of target molecules doubles at the end of each cycle. However, in practice, due to biochemical noise the efficiency of the PCR reaction, defined as the fraction of target molecules which are successfully copied during a cycle, is always less than 1. In this paper, we formulate the problem of joint maximum-likelihood estimation of the PCR efficiency and the initial DNA copy number. As indicated by simulation studies, the performance of the proposed estimator is superior with respect to competing statistical approaches. Moreover, we compute the Cramer-Rao lower bound on the mean-square estimation error
On joint maximum-likelihood estimation of PCR efficiency and initial amount of target
We consider the problem of estimating unknown parameters of the real-time polymerase chain reaction (RTPCR) from noisy observations. The joint ML estimator of the RT-PCR efficiency and the initial number of DNA target molecules is derived. The mean-square error performance of the estimator is studied via simulations. The simulation results indicate that the proposed estimator significantly outperforms a competing technique
Modeling the kinetics of hybridization in microarrays
Conventional fluorescent-based microarrays acquire data
after the hybridization phase. In this phase the targets analytes
(i.e., DNA fragments) bind to the capturing probes
on the array and supposedly reach a steady state. Accordingly,
microarray experiments essentially provide only a
single, steady-state data point of the hybridization process.
On the other hand, a novel technique (i.e., realtime
microarrays) capable of recording the kinetics of hybridization
in fluorescent-based microarrays has recently
been proposed in [5]. The richness of the information obtained
therein promises higher signal-to-noise ratio, smaller
estimation error, and broader assay detection dynamic range
compared to the conventional microarrays. In the current
paper, we develop a probabilistic model of the kinetics of
hybridization and describe a procedure for the estimation
of its parameters which include the binding rate and target
concentration. This probabilistic model is an important
step towards developing optimal detection algorithms for
the microarrays which measure the kinetics of hybridization,
and to understanding their fundamental limitations
Existence of codes with constant PMEPR and related design
Recently, several coding methods have been proposed to reduce the high peak-to-mean envelope ratio (PMEPR) of multicarrier signals. It has also been shown that with probability one, the PMEPR of any random codeword chosen from a symmetric quadrature amplitude modulation/phase shift keying (QAM/PSK) constellation is logn for large n, where n is the number of subcarriers. Therefore, the question is how much reduction beyond logn can one asymptotically achieve with coding, and what is the price in terms of the rate loss? In this paper, by optimally choosing the sign of each subcarrier, we prove the existence of q-ary codes of constant PMEPR for sufficiently large n and with a rate loss of at most log/sub q/2. We also obtain a Varsharmov-Gilbert-type upper bound on the rate of a code, given its minimum Hamming distance with constant PMEPR, for large n. Since ours is an existence result, we also study the problem of designing signs for PMEPR reduction. Motivated by a derandomization algorithm suggested by Spencer, we propose a deterministic and efficient algorithm to design signs such that the PMEPR of the resulting codeword is less than clogn for any n, where c is a constant independent of n. For symmetric q-ary constellations, this algorithm constructs a code with rate 1-log/sub q/2 and with PMEPR of clogn with simple encoding and decoding. Simulation results for our algorithm are presented
Maximum-Likelihood Sequence Detection of Multiple Antenna Systems over Dispersive Channels via Sphere Decoding
Multiple antenna systems are capable of providing high data rate transmissions over wireless channels. When the channels are dispersive, the signal at each receive antenna is a combination of both the current and past symbols sent from all transmit antennas corrupted by noise. The optimal receiver is a maximum-likelihood sequence detector and is often considered to be practically infeasible due to high computational complexity (exponential in number of antennas and channel memory). Therefore, in practice, one often settles for a less complex suboptimal receiver structure, typically with an equalizer meant to suppress both the intersymbol and interuser interference, followed by the decoder. We propose a sphere decoding for the sequence detection in multiple antenna communication systems over dispersive channels. The sphere decoding provides the maximum-likelihood estimate with computational complexity comparable to the standard space-time decision-feedback equalizing (DFE) algorithms. The performance and complexity of the sphere decoding are compared with the DFE algorithm by means of simulations
Manifold Optimization Over the Set of Doubly Stochastic Matrices: A Second-Order Geometry
Convex optimization is a well-established research area with applications in
almost all fields. Over the decades, multiple approaches have been proposed to
solve convex programs. The development of interior-point methods allowed
solving a more general set of convex programs known as semi-definite programs
and second-order cone programs. However, it has been established that these
methods are excessively slow for high dimensions, i.e., they suffer from the
curse of dimensionality. On the other hand, optimization algorithms on manifold
have shown great ability in finding solutions to nonconvex problems in
reasonable time. This paper is interested in solving a subset of convex
optimization using a different approach. The main idea behind Riemannian
optimization is to view the constrained optimization problem as an
unconstrained one over a restricted search space. The paper introduces three
manifolds to solve convex programs under particular box constraints. The
manifolds, called the doubly stochastic, symmetric and the definite multinomial
manifolds, generalize the simplex also known as the multinomial manifold. The
proposed manifolds and algorithms are well-adapted to solving convex programs
in which the variable of interest is a multidimensional probability
distribution function. Theoretical analysis and simulation results testify the
efficiency of the proposed method over state of the art methods. In particular,
they reveal that the proposed framework outperforms conventional generic and
specialized solvers, especially in high dimensions
A coding scheme for wireless networks with multiple antenna nodes and no channel information
In this paper, we present a coding strategy for wireless relay networks where the relay nodes are small devices with few resources, while the source and sink are equipped with multiple antennas to increase the transmission rate. We assume no channel knowledge at all, and the receiver decodes knowing none of the channel paths. This coding scheme uses distributed space-time coding techniques and is inspired by noncoherent differential space-time coding. It is shown to yield a diversity linear in the minimum number of transmit/receive antennas times the number of relays
Scaling laws of sum rate using time-sharing, DPC, and beamforming for MIMO broadcast channels
We derive the scaling laws of the sum rate throughput for MIMO Gaussian broadcast channels using time-sharing to the strongest user, dirty paper coding (DPC), and beamforming when the number of users (receivers) n is large. Assuming a fixed total average transmit power, we show that for a system with M transmit antennas and users equipped
with N antennas, the sum rate scales like M log log nN
for DPC and beamforming when M is fixed and for any N (either growing to infinity or not). On the other hand, when both M and N are fixed, the sum rate of time-sharing to the strongest user scales like min(M,N) log log n. It is also shown that if M grows as log n, the sum rate of DPC and beamforming will grow linearly in M, but with different constant multiplicative factors. In this region, the sum rate capacity of time-sharing scales like N log log n
A new exact closest lattice point search algorithm using linear constraints
The problem of finding the closest lattice point arises in several communications scenarios and is known to be NP-hard. We propose a new closest lattice point search algorithm which utilizes a set of new linear inequality constraints to reduce the search of the closest lattice point to the intersection of a polyhedron and a sphere. This set of linear constraints efficiently leverage the geometric structure of the lattice to reduce considerably the number of points that must be visited. Simulation results verify that this algorithm offers substantial computational savings over standard sphere decoding when the dimension of the problem is large
- …
