1,180 research outputs found
Coalgebraic Infinite Traces and Kleisli Simulations
Kleisli simulation is a categorical notion introduced by Hasuo to verify
finite trace inclusion. They allow us to give definitions of forward and
backward simulation for various types of systems. A generic categorical theory
behind Kleisli simulation has been developed and it guarantees the soundness of
those simulations with respect to finite trace semantics. Moreover, those
simulations can be aided by forward partial execution (FPE)---a categorical
transformation of systems previously introduced by the authors.
In this paper, we give Kleisli simulation a theoretical foundation that
assures its soundness also with respect to infinitary traces. There, following
Jacobs' work, infinitary trace semantics is characterized as the "largest
homomorphism." It turns out that soundness of forward simulations is rather
straightforward; that of backward simulation holds too, although it requires
certain additional conditions and its proof is more involved. We also show that
FPE can be successfully employed in the infinitary trace setting to enhance the
applicability of Kleisli simulations as witnesses of trace inclusion. Our
framework is parameterized in the monad for branching as well as in the functor
for linear-time behaviors; for the former we mainly use the powerset monad (for
nondeterminism), the sub-Giry monad (for probability), and the lift monad (for
exception).Comment: 39 pages, 1 figur
A Boyer-Moore Type Algorithm for Timed Pattern Matching
The timed pattern matching problem is formulated by Ulus et al. and has been
actively studied since, with its evident application in monitoring real-time
systems. The problem takes as input a timed word/signal and a timed pattern
(specified either by a timed regular expression or by a timed automaton); and
it returns the set of those intervals for which the given timed word, when
restricted to the interval, matches the given pattern. We contribute a
Boyer-Moore type optimization in timed pattern matching, relying on the classic
Boyer-Moore string matching algorithm and its extension to (untimed) pattern
matching by Watson and Watson. We assess its effect through experiments; for
some problem instances our Boyer-Moore type optimization achieves speed-up by
two times, indicating its potential in real-world monitoring tasks where data
sets tend to be massive
Fair Simulation for Nondeterministic and Probabilistic Buechi Automata: a Coalgebraic Perspective
Notions of simulation, among other uses, provide a computationally tractable
and sound (but not necessarily complete) proof method for language inclusion.
They have been comprehensively studied by Lynch and Vaandrager for
nondeterministic and timed systems; for B\"{u}chi automata the notion of fair
simulation has been introduced by Henzinger, Kupferman and Rajamani. We
contribute to a generalization of fair simulation in two different directions:
one for nondeterministic tree automata previously studied by Bomhard; and the
other for probabilistic word automata with finite state spaces, both under the
B\"{u}chi acceptance condition. The former nondeterministic definition is
formulated in terms of systems of fixed-point equations, hence is readily
translated to parity games and is then amenable to Jurdzi\'{n}ski's algorithm;
the latter probabilistic definition bears a strong ranking-function flavor.
These two different-looking definitions are derived from one source, namely our
coalgebraic modeling of B\"{u}chi automata. Based on these coalgebraic
observations, we also prove their soundness: a simulation indeed witnesses
language inclusion
- …
