61 research outputs found
Crystal-Size Effects on Carbon Dioxide Capture of a Covalently Alkylamine-Tethered Metal-Organic Framework Constructed by a One-Step Self-Assembly
To enhance the carbon dioxide (CO2) uptake of metal-organic frameworks (MOFs), amine functionalization of their pore surfaces has been studied extensively. In general, amine-functionalized MOFs have been synthesized via post-synthetic modifications. Herein, we introduce a one-step construction of a MOF ([(NiLethylamine)(BPDC)]=MOFNH2; [NiLethylamine]2+=[Ni(C12H32N8)]2+; BPDC2-=4,4???-biphenyldicarboxylate) possessing covalently tethered alkylamine groups without post-synthetic modification. Two-amine groups per metal centre were introduced by this method. MOFNH2 showed enhanced CO2 uptake at elevated temperatures, attributed to active chemical interactions between the amine groups and the CO2 molecules. Due to the narrow channels of MOFNH2, the accessibility to the channel of CO2 is the limiting factor in its sorption behaviour. In this context, only crystal size reduction of MOFNH2 led to much faster and greater CO2 uptake at low pressures.open
High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide
Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (similar to 10(-3) bar) at 300 K and release it at similar to 450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 pi orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materialsopen
Targeted emission reductions from global super-polluting power plant units
There are more than 30,000 biomass- and fossil-fuel-burning power plants now operating worldwide, reflecting a tremendously diverse infrastructure, which ranges in capacity from less than a megawatt to more than a gigawatt. In 2010, 68.7% of electricity generated globally came from these power plants, compared with 64.2% in 1990. Although the electricity generated by this infrastructure is vital to economic activity worldwide, it also produces more CO2 and air pollutant emissions than infrastructure from any other industrial sector. Here, we assess fuel- and region-specific opportunities for reducing undesirable air pollutant emissions using a newly developed emission dataset at the level of individual generating units. For example, we find that retiring or installing emission control technologies on units representing 0.8% of the global coal-fired power plant capacity could reduce levels of PM2.5 emissions by 7.7–14.2%. In India and China, retiring coal-fired plants representing 1.8% and 0.8% of total capacity can reduce total PM2.5 emissions from coal-fired plants by 13.2% and 16.0%, respectively. Our results therefore suggest that policies targeting a relatively small number of ‘super-polluting’ units could substantially reduce pollutant emissions and thus the related impacts on both human health and global climate
Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture.
The design of effective CO2 capture materials is an ongoing challenge. Here we report a concept to overcome current limitations associated with both liquid and solid CO2 capture materials by exploiting a solid-liquid hybrid superparticle (SLHSP). The fabrication of SLHSP involves assembly of hydrophobic silica nanoparticles on the liquid marble surface, and co-assembly of hydrophilic silica nanoparticles and tetraethylenepentamine within the interior of the liquid marble. The strong interfacial adsorption force and the strong interactions between amine and silica are identified to be key elements for high robustness. The developed SLHSPs exhibit excellent CO2 sorption capacity, high sorption rate, long-term stability and reduced amine loss in industrially preferred fixed bed setups. The outstanding performances are attributed to the unique structure which hierarchically organizes the liquid and solid at microscales
Modelling groundwater flow changes due to thermal effects of radioactive waste disposal at a hypothetical repository site near Sellafield, UK
High-level radioactive waste (HLW) and spent fuel from nuclear power plants (SF) require very long duration disposal because of its long-lived toxicity. Specific repository design is necessary to accommodate the associated large heat generation from continual decay. Conceptual designs propose geological containment within salt, claystone, or crystalline bedrock. However, while many studies have investigated the safety of disposal in these host rocks, the interaction of near-field heat coupled to far-field groundwater flow for UK-relevant conditions has not been fully investigated. Using an excellent dataset from a repository investigation in saturated fractured rock at Sellafield, UK, with deep groundwater flow, a preliminary investigation of the effect of the addition of heat from HLW and SF on regional groundwater flow is undertaken. A coupled thermo-hydrogeological groundwater flow model dependent on fluid density and viscosity has been calibrated to field data, before heat is added to simulate waste. Substantial heating reduces fluid density and dynamic viscosity. Groundwater flows upwards through permeable damage zones of high-angle faults and increases natural velocity by 1.5×. Elevated groundwater temperatures are predicted at the surface in just hundreds of years. Travel times for conservative chemical species from the hypothetical repository to the St. Bees Sandstone aquifer are reduced by over one-third if engineered barriers fail at the point of containment, and remain reduced by hundreds of years for particles released thousands of years after containment. The results imply that in conditions similar to those modelled, the high-performance guarantee of the engineered barrier is essential to repository safety. A very good understanding of the coupled interaction of near-field heat and far-field groundwater flow will be important for safety cases, especially accuracy concerning heterogeneous fault discontinuities. It is necessary to model heat advection and faults at fractured sites
Fossil fuels in a trillion tonne world.
The useful energy services and energy density value of fossil carbon fuels could be retained for longer timescales into the future if their combustion is balanced by CO2 recapture and storage. We assess the global balance between fossil carbon supply and the sufficiency (size) and capability (technology, security) of candidate carbon stores. A hierarchy of value for extraction-to-storage pairings is proposed, which is augmented by classification of CO2 containment as temporary (100,000 yr). Using temporary stores is inefficient and defers an intergenerational problem. Permanent storage capacity is adequate to technically match current fossil fuel reserves. However, rates of storage creation cannot balance current and expected rates of fossil fuel extraction and CO2 consequences. Extraction of conventional natural gas is uniquely holistic because it creates the capacity to re-inject an equivalent tonnage of carbon for storage into the same reservoir and can re-use gas-extraction infrastructure for storage. By contrast, balancing the extraction of coal, oil, biomass and unconventional fossil fuels requires the engineering and validation of additional carbon storage. Such storage is, so far, unproven in sufficiency
Recommended from our members
Comparing approaches for carbon dioxide removal
Alternatively known as greenhouse gas removal (GGR), carbon dioxide removal (CDR), or negative emissions technology (NET), the concept of removing greenhouse gases (GHGs)—primarily CO2—from the atmosphere has been gaining increasing academic, industrial, financial, and political attention over recent years as corporate and national commitments to net-zero targets proliferate. Practically all pathways to net zero include essential contributions from NET, typically 10%–20% of current national emission
Carbon capture and storage at the end of a lost decade
Following the landmark 2015 United Nations Paris Agreement, a growing number of countries are committing to the transition to net-zero emissions. Carbon capture and storage (CCS) has been consistently heralded to directly address emissions from the energy and industrial sectors and forms a significant component of plans to reach net-zero. However, despite the critical importance of the technology and substantial research and development to date, CCS deployment has been slow. This review examines deployment efforts over the last decade. We reveal that facility deployment must increase dramatically from current levels, and much work remains to maximize storage of CO2 in vast subsurface reserves. Using current rates of deployment, CO2 storage capacity by 2050 is projected to be around 700 million tons per year, just 10% of what is required. Meeting the net-zero targets via CCS ambitions seems unlikely unless worldwide coordinated efforts and rapid changes in policy take place
Diagenetic paths in the margin of a Triassic Basin: NW zone of the Iberian Chain, Spain
Buntsandstein deposits generated in a slowly
subsiding basin on the western margin of the Iberian
Chain are represented by a stratigraphic succession of
fluvial deposits less than 100 m thick (conglomerates,
sandstones, and shales). Diagenetic processes in sandstones
can be grouped as eodiagenetic, mesodiagenetic,
and telodiagenetic. Eodiagenesis can be associated
with Muschelkalk, Keuper, and probably early Jurassic
times. Mesodiagenesis is probably related to
Jurassic times. Diagenetic chemical reactions suggest a
maximum burial less than 1.5 km and low temperatures
(<120ºC). Patterns of porosity reduction by
compaction and cementation suggest four diagenetic
stages: (1) Loss of primary porosity by early
mechanical compaction; (2) early cementation (Kfeldspar
and dolomite); (3) dissolution of cements; and
(4) framework collapse by re-compaction. These stages
are manifested by the presence of two types of sandstone.
Type I sandstones present high intergranular
volume (mean, 30%). Type II sandstones are characterized
by high compactional porosity loss and exhibit
low values of intergranular volume (mean, 16.9%).
Type II sandstones are associated with the dissolution
of cement and later re-compaction of type I sandstones.
An intermediate telodiagenetic phase is deduced
and related to the sharp unconformity between
Lower Cretaceous sediments and the underlying sediments.
This suggests that a mechanically unstable
framework collapsed during the Cretaceous, generating
type II sandstones. The analyzed diagenetic paths have
a wide applicability on similar marginal areas of rift
basins
Estimating geological CO2 storage security to deliver on climate mitigation
Carbon capture and storage (CCS) can help nations meet their Paris CO2 reduction commitments cost-effectively. However, lack of confidence in geologic CO2 storage security remains a barrier to CCS implementation. Here we present a numerical program that calculates CO2 storage security and leakage to the atmosphere over 10,000 years. This combines quantitative estimates of geological subsurface CO2 retention, and of surface CO2 leakage. We calculate that realistically well-regulated storage in regions with moderate well densities has a 50% probability that leakage remains below 0.0008% per year, with over 98% of the injected CO2 retained in the subsurface over 10,000 years. An unrealistic scenario, where CO2 storage is inadequately regulated, estimates that more than 78% will be retained over 10,000 years. Our modelling results suggest that geological storage of CO2 can be a secure climate change mitigation option, but we note that long-term behaviour of CO2 in the subsurface remains a key uncertainty
- …
