447 research outputs found

    Effects of gadolinium and tin to the production of oxidative enzymes and the growth of five basidiomycetous fungi

    Get PDF
    Effects of gadolinium (Gd) and tin (Sn) on the growth and production of oxidative enzymes with five basidiomycetous fungi were tested. For this study we have selected well-known white-rot fungi Obba rivulosa and Kuehneromyces mutabilis, in addition to this we have tested three new isolates, the white-rot fungus Phlebia subochracea, the litter-degrading fungus Gymnopus dryophilus and the brown-rot fungus Heliocybe sulcata. This approach allowed us to find possible new sources for oxidative enzymes, such as laccases and versatile peroxidases (VPs). All five tested fungi grew in the presence of Gd (0-200 mg/l) or Sn (0-200 mg/l) on ABTS (2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) containing plates. The growth rate of H. sulcata was tolerant to Gd and Sn (0- 200 mg/l). The growth rates of P. subochracea and G. dryophilus were sensitive to Gd (5-200 mg/l) and Sn (5-200 mg/l). O. rivulosa, K. mutabilis, P. subochracea and G. dryophilus formed colour zones on the ABTS plates indicating that these fungi produced oxidative enzymes, most probably laccases. The brown-rot fungus H. sulcata did not form colour zone on the ABTS plate indicating that this fungus did not produce laccase. The production of laccase with G. dryophilus and K. mutabilis was tolerant to Gd (0-200 mg/l) and Sn (0-200 mg/l). The production of laccase with P. subochracea was sensitive to Gd (5-200 mg/l) and Sn (5-200 mg/l). P. subochracea decolorized the dye Reactive Black 5 without or with Gd and Sn (0- 200 mg/l) indicating the production of VP. O. rivulosa, K. mutabilis, G. dryophilus and H. sulcata did not produce VP. The production of VP by P. subochracea was sensitive to 200 mg/l Gd and Sn.Peer reviewe

    Atmospheric constraints on the methane emissions from the East Siberian Shelf

    Get PDF
    Subsea permafrost and hydrates in the East Siberian Arctic Shelf (ESAS) constitute a substantial carbon pool, and a potentially large source of methane to the atmosphere. Previous studies based on interpolated oceanographic campaigns estimated atmospheric emissions from this area at 8&ndash;17 TgCH<sub>4</sub> yr<sup>−1</sup>. Here, we propose insights based on atmospheric observations to evaluate these estimates. The comparison of high-resolution simulations of atmospheric methane mole fractions to continuous methane observations during the whole year 2012 confirms the high variability and heterogeneity of the methane releases from ESAS. A reference scenario with ESAS emissions of 8 TgCH<sub>4</sub> yr<sup>−1</sup>, in the lower part of previously estimated emissions, is found to largely overestimate atmospheric observations in winter, likely related to overestimated methane leakage through sea ice. In contrast, in summer, simulations are more consistent with observations. Based on a comprehensive statistical analysis of the observations and of the simulations, annual methane emissions from ESAS are estimated to range from 0.0 to 4.5 TgCH<sub>4</sub> yr<sup>−1</sup>. Isotopic observations suggest a biogenic origin (either terrestrial or marine) of the methane in air masses originating from ESAS during late summer 2008 and 2009

    Secretion of ligninolytic enzymes and mineralization of 14C-ring-labeled synthetic lignin by 3 Phlebia tremellosa strains

    Get PDF
    Production of ligninolytic enzymes by three strains of the white rot fungus Phlebia tremellosa (syn. Merulius tremellosus) was studied in bioreactor cultivation under nitrogen-limiting conditions. The Mn(II) concentration of the growth medium strongly affected the secretion patterns of lignin peroxidase and laccase. Two major lignin peroxidase isoenzymes were expressed in all strains. In addition, laccase and glyoxal oxidase were purified and characterized in one strain of P. tremellosa. In contrast, manganese peroxidase was not found in fast protein liquid chromatography profiles of extracellular proteins under either low (2.4 µM) or elevated (24 and 120 µM) Mn(II) concentrations. However, H2O2- and Mn-dependent phenol red-oxidizing activity was detected in cultures supplemented with higher Mn(II) levels. Mineralization rates of 14C-ring-labelled synthetic lignin (i.e., dehydrogenation polymerizate) by all strains under a low basal Mn(II) level were similar to those obtained for Phanerochaete chrysosporium and Phlebia radiata. A high manganese concentration repressed the evolution of 14CO2 even when a chelating agent, sodium malonate, was included in the medium

    Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat-straw

    Get PDF
    The white rot fungus Phlebia radiata 79 (ATCC 64658) produces lignin peroxidase (LiP), manganese peroxidase (MnP), glyoxal oxidase (GLOX), and laccase in the commonly used glucose low-nitrogen liquid medium. However, the enzymes which this fungus utilizes for selective removal of lignin during degradation of different lignocellulosic substrates have not been studied before. Multiple forms of LiP, MnP, GLOX, and laccase were purified from P. radiata culture extracts obtained after solid-state fermentation of wheat straw. However, the patterns of extracellular lignin-modifying enzymes studied were different from those of the enzymes usually found in liquid cultures of P. radiata. Three LiP isoforms were purified. The major LiP isoform from solid-state cultivation was LiP2. LiP3, which has usually been described as the major isoenzyme in liquid cultures, was not expressed during straw fermentation. New MnP isoforms have been detected in addition to the previously reported MnPs. GLOX was secreted in rather high amounts simultaneously with LiP during the first 2 weeks of growth. GLOX purified from P. radiata showed multiple forms, with pIs ranging from 4.0 to 4.6 and with a molecular mass of ca. 68 kDa

    Formation and action of lignin-modifying enzymes in cultures of Phlebia radiata supplemented with veratric acid

    Get PDF
    Transformation of veratric (3,4-dimethoxybenzoic) acid by the white rot fungus Phlebia radiata was studied to elucidate the role of ligninolytic, reductive, and demeth(ox)ylating enzymes. Under both air and a 100% O2 atmosphere, with nitrogen limitation and glucose as a carbon source, reducing activity resulted in the accumulation of veratryl alcohol in the medium. When the fungus was cultivated under air, veratric acid caused a rapid increase in laccase (benzenediol:oxygen oxidoreductase; EC 1.10.3.2) production, which indicated that veratric acid was first demethylated, thus providing phenolic compounds for laccase. After a rapid decline in laccase activity, elevated lignin peroxidase (ligninase) activity and manganese-dependent peroxidase production were detected simultaneously with extracellular release of methanol. This indicated apparent demethoxylation. When the fungus was cultivated under a continuous 100% O2 flow and in the presence of veratric acid, laccase production was markedly repressed, whereas production of lignin peroxidase and degradation of veratryl compounds were clearly enhanced. In all cultures, the increases in lignin peroxidase titers were directly related to veratryl alcohol accumulation. Evolution of 14CO2 from 3-O14CH3-and 4-O14CH3-labeled veratric acids showed that the position of the methoxyl substituent in the aromatic ring only slightly affected demeth(ox)ylation activity. In both cases, more than 60% of the total 14C was converted to 14CO2 under air in 4 weeks, and oxygen flux increased the degradation rate of the 14C-labeled veratric acids just as it did with unlabeled cultures

    Developing energy efficient lignin biomass processing: towards understanding mediator behaviour in ionic liquids

    Get PDF
    Environmental concerns have brought attention to the requirement for more efficient and renewable processes for chemicals production. Lignin is the second most abundant natural polymer, and might serve as a sustainable resource for manufacturing fuels and aromatic derivatives for the chemicals industry after being depolymerised. In this work, the mediator 2,2′-azino-bis(3-ethylbenthiazoline-6-sulfonic acid) diammonium salt (ABTS), commonly used with enzyme degradation systems, has been evaluated by means of cyclic voltammetry (CV) for enhancing the oxidation of the non-phenolic lignin model compound veratryl alcohol and three types of lignin (organosolv, Kraft and lignosulfonate) in the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate, ([C2mim][C2SO4]). The presence of either veratryl alcohol or organosolv lignin increased the second oxidation peak of ABTS under select conditions, indicating the ABTS-mediated oxidation of these molecules at high potentials in [C2mim][C2SO4]. Furthermore, CV was applied as a quick and efficient way to explore the impact of water in the ABTS-mediated oxidation of both organosolv and lignosulfonate lignin. Higher catalytic efficiencies of ABTS were observed for lignosulfonate solutions either in sodium acetate buffer or when [C2mim][C2SO4] (15 v/v%) was present in the buffer solution, whilst there was no change found in the catalytic efficiency of ABTS in [C2mim][C2SO4]–lignosulfonate mixtures relative to ABTS alone. In contrast, organosolv showed an initial increase in oxidation, followed by a significant decrease on increasing the water content of a [C2mim][C2SO4] solution
    corecore