507 research outputs found
Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system
Current treatment modalities for the neurodegenerative disease multiple sclerosis (MS) use disease-modifying immunosuppressive compounds but do not promote repair. Although several potential targets that may induce myelin production have been identified, there has yet to be an approved therapy that promotes remyelination in the damaged central nervous system (CNS). Remyelination of damaged axons requires the generation of new oligodendrocytes from oligodendrocyte progenitor cells (OPCs). Although OPCs are detected in MS lesions, repair of myelin is limited, contributing to progressive clinical deterioration. In the CNS, the chemokine CXCL12 promotes remyelination via CXCR4 activation on OPCs, resulting in their differentiation into myelinating oligodendrocytes. Although the CXCL12 scavenging receptor CXCR7/ACKR3 (CXCR7) is also expressed by OPCs, its role in myelin repair in the adult CNS is unknown. We show that during cuprizone-induced demyelination, in vivo CXCR7 antagonism augmented OPC proliferation, leading to increased numbers of mature oligodendrocytes within demyelinated lesions. CXCR7-mediated effects on remyelination required CXCR4 activation, as assessed via both phospho-S339-CXCR4–specific antibodies and administration of CXCR4 antagonists. These findings identify a role for CXCR7 in OPC maturation during remyelination and are the first to use a small molecule to therapeutically enhance myelin repair in the demyelinated adult CNS
Establishment of a novel CCR5 and CXCR4 expressing CD4(+ )cell line which is highly sensitive to HIV and suitable for high-throughput evaluation of CCR5 and CXCR4 antagonists
BACKGROUND: CCR5 and CXCR4 are the two main coreceptors essential for HIV entry. Therefore, these chemokine receptors have become important targets in the search for anti-HIV agents. Here, we describe the establishment of a novel CD4(+ )cell line, U87.CD4.CCR5.CXCR4, stably expressing both CCR5 and CXCR4 at the cell surface. RESULTS: In these cells, intracellular calcium signalling through both receptors can be measured in a single experiment upon the sequential addition of CXCR4- and CCR5-directed chemokines. The U87.CD4.CCR5.CXCR4 cell line reliably supported HIV-1 infection of diverse laboratory-adapted strains and primary isolates with varying coreceptor usage (R5, X4 and R5/X4) and allows to investigate the antiviral efficacy of combined CCR5 and CXCR4 blockade. The antiviral effects recorded in these cells with the CCR5 antagonist SCH-C and the CXCR4 antagonist AMD3100 were similar to those noted in the single CCR5- or CXCR4-transfected U87.CD4 cells. Furthermore, the combination of both inhibitors blocked the infection of all evaluated HIV-1 strains and isolates. CONCLUSIONS: Thus, the U87.CD4.CCR5.CXCR4 cell line should be useful in the evaluation of CCR5 and CXCR4 antagonists with therapeutic potential and combinations thereof
Multivariable regression analysis of febrile neutropenia occurrence in early breast cancer patients receiving chemotherapy assessing patient-related, chemotherapy-related and genetic risk factors.
BACKGROUND: Febrile neutropenia (FN) is common in breast cancer patients undergoing chemotherapy. Risk factors for FN have been reported, but risk models that include genetic variability have yet to be described. This study aimed to evaluate the predictive value of patient-related, chemotherapy-related, and genetic risk factors.
METHODS: Data from consecutive breast cancer patients receiving chemotherapy with 4-6 cycles of fluorouracil, epirubicin, and cyclophosphamide (FEC) or three cycles of FEC and docetaxel were retrospectively recorded. Multivariable logistic regression was carried out to assess risk of FN during FEC chemotherapy cycles.
RESULTS: Overall, 166 (16.7%) out of 994 patients developed FN. Significant risk factors for FN in any cycle and the first cycle were lower platelet count (OR = 0.78 [0.65; 0.93]) and haemoglobin (OR = 0.81 [0.67; 0.98]) and homozygous carriers of the rs4148350 variant T-allele (OR = 6.7 [1.04; 43.17]) in MRP1. Other significant factors for FN in any cycle were higher alanine aminotransferase (OR = 1.02 [1.01; 1.03]), carriers of the rs246221 variant C-allele (OR = 2.0 [1.03; 3.86]) in MRP1 and the rs351855 variant C-allele (OR = 2.48 [1.13; 5.44]) in FGFR4. Lower height (OR = 0.62 [0.41; 0.92]) increased risk of FN in the first cycle.
CONCLUSIONS: Both established clinical risk factors and genetic factors predicted FN in breast cancer patients. Prediction was improved by adding genetic information but overall remained limited. Internal validity was satisfactory. Further independent validation is required to confirm these findings
Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with prognosis of estrogen receptor-negative breast cancer after chemotherapy
Introduction: Tumor lymphocyte infiltration is associated with clinical response to chemotherapy in estrogen receptor (ER) negative breast cancer. To identify variants in immunosuppressive pathway genes associated with prognosis after adjuvant chemotherapy for ER-negative patients, we studied stage I-III invasive breast cancer patients of European ancestry, including 9,334 ER-positive (3,151 treated with chemotherapy) and 2,334 ER-negative patients (1,499 treated with chemotherapy). Methods: We pooled data from sixteen studies from the Breast Cancer Association Consortium (BCAC), and employed two independent studies for replications. Overall 3,610 single nucleotide polymorphisms (SNPs) in 133 genes were genotyped as part of the Collaborative Oncological Gene-environment Study, in which phenotype and clinical data were collected and harmonized. Multivariable Cox proportional hazard regression was used to assess genetic associations with overall survival (OS) and breast
Pro-inflammatory properties of stromal cell-derived factor-1 (CXCL12) in collagen-induced arthritis
CXCL12 (stromal cell-derived factor 1) is a unique biological ligand for the chemokine receptor CXCR4. We previously reported that treatment with a specific CXCR4 antagonist, AMD3100, exerts a beneficial effect on the development of collagen-induced arthritis (CIA) in the highly susceptible IFN-γ receptor-deficient (IFN-γR KO) mouse. We concluded that CXCL12 plays a central role in the pathogenesis of CIA in IFN-γR KO mice by promoting delayed type hypersensitivity against the auto-antigen and by interfering with chemotaxis of CXCR4(+ )cells to the inflamed joints. Here, we investigated whether AMD3100 can likewise inhibit CIA in wild-type mice and analysed the underlying mechanism. Parenteral treatment with the drug at the time of onset of arthritis reduced disease incidence and modestly inhibited severity in affected mice. This beneficial effect was associated with reduced serum concentrations of IL-6. AMD3100 did not affect anti-collagen type II antibodies and, in contrast with its action in IFN-γR KO mice, did not inhibit the delayed type hypersensitivity response against collagen type II, suggesting that the beneficial effect cannot be explained by inhibition of humoral or cellular autoimmune responses. AMD3100 inhibited the in vitro chemotactic effect of CXCL12 on splenocytes, as well as in vivo leukocyte infiltration in CXCL12-containing subcutaneous air pouches. We also demonstrate that, in addition to its effect on cell infiltration, CXCL12 potentiates receptor activator of NF-κB ligand-induced osteoclast differentiation from splenocytes and increases the calcium phosphate-resorbing capacity of these osteoclasts, both processes being potently counteracted by AMD3100. Our observations indicate that CXCL12 acts as a pro-inflammatory factor in the pathogenesis of autoimmune arthritis by attracting inflammatory cells to joints and by stimulating the differentiation and activation of osteoclasts
Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells
Photodynamic therapy (PDT) using 5-aminolaevulinic acid (ALA) to drive production of an intracellular photosensitiser, protoporphyrin IX (PpIX), is a promising cancer treatment. However, ALA-PDT is still suboptimal for thick or refractory tumours. Searching for new approaches, we tested a known inducer of cellular differentiation, methotrexate (MTX), in combination with ALA-PDT in LNCaP cells. Methotrexate alone promoted growth arrest, differentiation, and apoptosis. Methotrexate pretreatment (1 mg l−1, 72 h) followed by ALA (0.3 mM, 4 h) resulted in a three-fold increase in intracellular PpIX, by biochemical and confocal analyses. After exposure to 512 nm light, killing was significantly enhanced in MTX-preconditioned cells. The reverse order of treatments, ALA-PDT followed by MTX, yielded no enhancement. Methotrexate caused a similar relative increase in PpIX, whether cells were incubated with ALA, methyl-ALA, or hexyl-ALA, arguing against a major effect upon ALA transport. Searching for an effect among porphyrin synthetic enzymes, we found that coproporphyrinogen oxidase (CPO) was increased three-fold by MTX at the mRNA and protein levels. Transfection of LNCaP cells with a CPO-expressing vector stimulated the accumulation of PpIX. Our data suggest that MTX, when used to modulate intracellular production of endogenous PpIX, may provide a new combination PDT approach for certain cancers
HIV Tropism and Decreased Risk of Breast Cancer
During the first two decades of the U.S. AIDS epidemic, and unlike some malignancies, breast cancer risk was significantly lower for women with human immunodeficiency virus (HIV) infection compared to the general population. This deficit in HIV-associated breast cancer could not be attributed to differences in survival, immune deficiency, childbearing or other breast cancer risk factors. HIV infects mononuclear immune cells by binding to the CD4 molecule and to CCR5 or CXCR4 chemokine coreceptors. Neoplastic breast cells commonly express CXCR4 but not CCR5. In vitro, binding HIV envelope protein to CXCR4 has been shown to induce apoptosis of neoplastic breast cells. Based on these observations, we hypothesized that breast cancer risk would be lower among women with CXCR4-tropic HIV infection.We conducted a breast cancer nested case-control study among women who participated in the WIHS and HERS HIV cohort studies with longitudinally collected risk factor data and plasma. Cases were HIV-infected women (mean age 46 years) who had stored plasma collected within 24 months of breast cancer diagnosis and an HIV viral load≥500 copies/mL. Three HIV-infected control women, without breast cancer, were matched to each case based on age and plasma collection date. CXCR4-tropism was determined by a phenotypic tropism assay. Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer were estimated by exact conditional logistic regression. Two (9%) of 23 breast cancer cases had CXCR4-tropic HIV, compared to 19 (28%) of 69 matched controls. Breast cancer risk was significantly and independently reduced with CXCR4 tropism (adjusted odds ratio, 0.10, 95% CI 0.002-0.84) and with menopause (adjusted odds ratio, 0.08, 95% CI 0.001-0.83). Adjustment for CD4+ cell count, HIV viral load, and use of antiretroviral therapy did not attenuate the association between infection with CXCR4-tropic HIV and breast cancer.Low breast cancer risk with HIV is specifically linked to CXCR4-using variants of HIV. These variants are thought to exclusively bind to and signal through a receptor that is commonly expressed on hyperplastic and neoplastic breast duct cells. Additional studies are needed to confirm these observations and to understand how CXCR4 might reduce breast cancer risk
Thymic development beyond β-selection requires phosphatidylinositol 3-kinase activation by CXCR4
T cell development requires phosphatidylinositol 3-kinase (PI3K) signaling with contributions from both the class IA, p110δ, and class IB, p110γ catalytic subunits. However, the receptors on immature T cells by which each of these PI3Ks are activated have not been identified, nor has the mechanism behind their functional redundancy in the thymus. Here, we show that PI3K signaling from the preTCR requires p110δ, but not p110γ. Mice deficient for the class IB regulatory subunit p101 demonstrated the requirement for p101 in T cell development, implicating G protein–coupled receptor signaling in β-selection. We found evidence of a role for CXCR4 using small molecule antagonists in an in vitro model of β-selection and demonstrated a requirement for CXCR4 during thymic development in CXCR4-deficient embryos. Finally, we demonstrate that CXCL12, the ligand for CXCR4, allows for Notch-dependent differentiation of DN3 thymocytes in the absence of supporting stromal cells. These findings establish a role for CXCR4-mediated PI3K signaling that, together with signals from Notch and the preTCR, contributes to continued T cell development beyond β-selection
Fine Definition of the CXCR4-Binding Region on the V3 Loop of Feline Immunodeficiency Virus Surface Glycoprotein
The chemokine receptor CXCR4 is shared by primary and laboratory-adapted strains of feline immunodeficiency virus (FIV) for viral entry. Our previous studies implicated a contiguous nine-amino-acid region of the V3 loop of the FIV envelope surface as important in CXCR4 binding and virus entry. The binding is specific for CXCR4 since it can be inhibited by AMD3100, a selective CXCR4 inhibitor. Additional site-directed mutagenesis was used to further reveal the key residues. Binding studies indicated that basic residues R395, K397, R399 as well as N398 are critical for CXCR4 binding. The effect of other amino acid residues on receptor binding depends on the type of amino acid residue substituted. The binding study results were confirmed on human CXCR4-expressing SupT1 cells and correlated with entry efficiency using a virus entry assay. Amino acid residues critical for CXCR4 are not critical for interactions with the primary binding receptor CD134, which has an equivalent role as CD4 for HIV-1 binding. The ELISA results show that W394 and W400 are crucial for the recognition by neutralizing anti-V3 antibodies. Since certain strains of HIV-1 also use CXCR4 as the entry receptor, the findings make the feline model attractive for development of broad-based entry antagonists and for study of the molecular mechanism of receptor/virus interactions
- …
