1,564 research outputs found
Temperature Driven Structural Phase Transition in Tetragonal-Like BiFeO3
Highly-strained BiFeO3 exhibits a "tetragonal-like, monoclinic" crystal
structure found only in epitaxial films (with an out-of-plane lattice parameter
exceeding the in-plane value by >20%). Previous work has shown that this phase
is properly described as a M monoclinic structure at room temperature
[with a (010) symmetry plane, which contains the ferroelectric
polarization]. Here we show detailed temperature-dependent x-ray diffraction
data that evidence a structural phase transition at ~100C to a high-temperature
M phase ["tetragonal-like" but with a (1-10) symmetry plane].
These results indicate that the ferroelectric properties and domain structures
of strained BiFeO will be strongly temperature dependent.Comment: 10 pages, 3 figure
Comparing life expectancy of three deer species between captive and wild populations
Life in zoological gardens provides a number of benefits to captive animals, resulting in an artificial reduction of the “struggle for life” compared to their free-ranging counterparts. These advantages should result in a higher chance of surviving from one year to the next, and thus in longer average life expectancies for captive animals, given that the biological requirements of the species are adequately met. Here, we compare the life expectancy of captive and free-ranging populations of three deer species (reindeer Rangifer tarandus, red deer Cervus elaphus, and roe deer Capreolus capreolus). Whereas captive reindeer and red deer had life expectancies equal to or longer than free-ranging individuals, the life expectancy of captive roe deer was shorter than that of free-ranging animals. These results support the impression that roe deer are difficult to keep in zoos, whereas reindeer and red deer perform well under human care. We suggest that the mean life expectancy of captive populations relative to that of corresponding free-ranging populations is a reliable indicator to evaluate the husbandry success of a species in captivity
Phase transition close to room temperature in BiFeO3 thin films
BiFeO3 (BFO) multiferroic oxide has a complex phase diagram that can be
mapped by appropriately substrate-induced strain in epitaxial films. By using
Raman spectroscopy, we conclusively show that films of the so-called
supertetragonal T-BFO phase, stabilized under compressive strain, displays a
reversible temperature-induced phase transition at about 100\circ, thus close
to room temperature.Comment: accepted in J. Phys.: Condens. Matter (Fast Track Communication
Herbivorous reptiles and body mass: Effects on food intake, digesta retention, digestibility and gut capacity, and a comparison with mammals
Differences in the allometric scaling between gut capacity (with body mass, BM1.00) and food intake (with BM0.75) should theoretically result in a scaling of digesta retention time with BM0.25 and therefore a higher digestive efficiency in larger herbivores. This concept is an important part of the so-called ‘Jarman-Bell principle’ (JBP) that explains niche differentiation along a body size gradient in terms of digestive physiology. Empirical data in herbivorous mammals, however, do not confirm the scaling of retention time, or of digestive efficiency, with body mass. Here, we test these concepts in herbivorous reptiles, adding data of an experiment that measured food intake, digesta retention, digestibility and gut capacity in 23 tortoises (Testudo graeca, T. hermanni , Geochelone nigra, G. sulcata, Dipsochelys dussumieri) across a large BM range (0.5-180 kg) to a literature data collection. While dry matter gut fill scaled to BM1.07 and dry matter intake to BM0.76, digesta mean retention time (MRT) scaled to BM0.17; the scaling exponent was not significantly different from zero for species > 1 kg. Food intake level was a major determinant of MRT across reptiles and mammals. In contrast to dietary fibre level, BM was not a significant contributor to dry matter digestibility in a General Linear Model. Digestibility coefficients in reptiles depended on diet nutrient composition in a similar way as described in mammals. Although food intake is generally lower and digesta retention longer in reptiles than in mammals, digestive functions scale in a similar way in both clades, indicating universal principles in herbivore digestive physiology. The reasons why the theoretically derived JBP has little empirical support remain to be investigated. Until then, the JBP should not be evoked to explain niche differentiation along a body size axis in terms of digestive physiology
The trans-activation domain of the sporulation response regulator Spo0A revealed by X-ray crystallography
Sporulation in Bacillus involves the induction of scores of genes in a temporally and spatially co-ordinated programme of cell development. Its initiation is under the control of an expanded two-component signal transduction system termed a phosphorelay. The master control element in the decision to sporulate is the response regulator, Spo0A, which comprises a receiver or phosphoacceptor domain and an effector or transcription activation domain. The receiver domain of Spo0A shares sequence similarity with numerous response regulators, and its structure has been determined in phosphorylated and unphosphorylated forms. However, the effector domain (C-Spo0A) has no detectable sequence similarity to any other protein, and this lack of structural information is an obstacle to understanding how DNA binding and transcription activation are controlled by phosphorylation in Spo0A. Here, we report the crystal structure of C-Spo0A from Bacillus stearothermophilus revealing a single alpha -helical domain comprising six alpha -helices in an unprecedented fold. The structure contains a helix-turn-helix as part of a three alpha -helical bundle reminiscent of the catabolite gene activator protein (CAP), suggesting a mechanism for DNA binding. The residues implicated in forming the sigma (A)-activating region clearly cluster in a flexible segment of the polypeptide on the opposite side of the structure from that predicted to interact with DNA. The structural results are discussed in the context of the rich array of existing mutational data
Does export dependency hurt economic development? Empirical evidence from Singapore
A rapid export growth in East Asia was once identified as a source of the sustainable economic development that the region enjoyed. However, the current global recession has turned exports from an economic virtue to a vice. There is a growing awareness that a heavy reliance on exports has caused a serious economic downturn in the region. The present paper chooses Singapore as a case study to examine the relationship between the origin of the East Asian Miracle (i.e. export dependency) and the economic growth. For this purpose, the study employs a causality test developed by Toda and Yamamoto. The empirical findings indicate that despite a negative long-run relationship between export dependency and economic growth, Singapore's heavy reliance on exports does not seem to have produced negative effects on the nation's economic growth. This is because the increase in export dependency was an effect, and not a cause, of the country's output expansion.
New Symmetries in Crystals and Handed Structures
For over a century, the structure of materials has been described by a
combination of rotations, rotation-inversions and translational symmetries. By
recognizing the reversal of static structural rotations between clockwise and
counterclockwise directions as a distinct symmetry operation, here we show that
there are many more structural symmetries than are currently recognized in
right- or left-handed handed helices, spirals, and in antidistorted structures
composed equally of rotations of both handedness. For example, though a helix
or spiral cannot possess conventional mirror or inversion symmetries, they can
possess them in combination with the rotation reversal symmetry. Similarly, we
show that many antidistorted perovskites possess twice the number of symmetry
elements as conventionally identified. These new symmetries predict new forms
for "roto" properties that relate to static rotations, such as rotoelectricity,
piezorotation, and rotomagnetism. They also enable symmetry-based search for
new phenomena, such as multiferroicity involving a coupling of spins, electric
polarization and static rotations. This work is relevant to structure-property
relationships in all material structures with static rotations such as
minerals, polymers, proteins, and engineered structures.Comment: 15 Pages, 4 figures, 3 Tables; Fig. 2b has error
Alien Registration- Hatt, Cecil M. (Gorham, Cumberland County)
https://digitalmaine.com/alien_docs/31936/thumbnail.jp
Selecting social work students:lessons from research in Scotland
The issue of selection of students to social work programmes is one that remains highly contested. While it is clear that there is no single way of choosing the next generation of social work students, nevertheless, there are a number of strongly held beliefs about what ‘best practice’ means in this fraught field. These can be difficult to challenge, and even harder to shift, in spite of contrary evidence. This paper presents research conducted in Scotland in 2016 as part of the Scottish Government-sponsored Review of Social Work Education. The research set out to consider what selection processes were being used in Scotland and why; more fundamentally, it sought to explore the views of those involved in social work education alongside evidence about the outcomes of the selection processes (that is, data on student retention and success). The article concludes that while there is little evidence that one method of selection to social work programmes is intrinsically better than another, issues of fairness and transparency in selection, as well as diversity, remain pressing
- …
