9,014 research outputs found

    Triplet Production by Linearly Polarized Photons

    Full text link
    The process of electron-positron pair production by linearly polarized photons is used as a polarimeter to perform mobile measurement of linear photon polarization. In the limit of high photon energies, omega, the distributions of the recoil-electron momentum and azimuthal angle do not depend on the photon energy in the laboratory frame. We calculate the power corrections of order m/omega to the above distributions and estimate the deviation from the asymptotic result for various values of omega.Comment: LaTeX2e, 13 pages, 5 figure files (eps), submitted to Phys. Rev.

    Electron-Electron Bremsstrahlung Emission and the Inference of Electron Flux Spectra in Solar Flares

    Full text link
    Although both electron-ion and electron-electron bremsstrahlung contribute to the hard X-ray emission from solar flares, the latter is normally ignored. Such an omission is not justified at electron (and photon) energies above 300\sim 300 keV, and inclusion of the additional electron-electron bremsstrahlung in general makes the electron spectrum required to produce a given hard X-ray spectrum steeper at high energies. Unlike electron-ion bremsstrahlung, electron-electron bremsstrahlung cannot produce photons of all energies up to the maximum electron energy involved. The maximum possible photon energy depends on the angle between the direction of the emitting electron and the emitted photon, and this suggests a diagnostic for an upper cutoff energy and/or for the degree of beaming of the accelerated electrons. We analyze the large event of January 17, 2005 observed by RHESSI and show that the upward break around 400 keV in the observed hard X-ray spectrum is naturally accounted for by the inclusion of electron-electron bremsstrahlung. Indeed, the mean source electron spectrum recovered through a regularized inversion of the hard X-ray spectrum, using a cross-section that includes both electron-ion and electron-electron terms, has a relatively constant spectral index δ\delta over the range from electron kinetic energy E=200E = 200 keV to E=1E = 1 MeV. However, the level of detail discernible in the recovered electron spectrum is not sufficient to determine whether or not any upper cutoff energy exists.Comment: 7 pages, 5 figures, submitted to Astrophysical Journa

    Quantum transport in chains with noisy off-diagonal couplings

    Full text link
    We present a model for conductivity and energy diffusion in a linear chain described by a quadratic Hamiltonian with Gaussian noise. We show that when the correlation matrix is diagonal, the noise-averaged Liouville-von Neumann equation governing the time-evolution of the system reduces to the Lindblad equation with Hermitian Lindblad operators. We show that the noise-averaged density matrix for the system expectation values of the energy density and the number density satisfy discrete versions of the heat and diffusion equations. Transport coefficients are given in terms of model Hamiltonian parameters. We discuss conditions on the Hamiltonian under which the noise-averaged expectation value of the total energy remains constant. For chains placed between two heat reservoirs, the gradient of the energy density along the chain is linear.Comment: 6 pages, to appear in J. Chem. Phy

    Interaction-Induced Spin Polarization in Quantum Dots

    Get PDF
    The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.Comment: 4 pages, 5 figure

    Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method

    Get PDF
    A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the relativistic Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma containing high-energy photons and pairs. The collision kernels for the photons as well as pairs are constructed for Compton scattering, pair annihilation and creation, bremsstrahlung, and Bhabha & Moller scattering. For a homogeneous and isotropic plasma, analytical equilibrium solutions are obtained in terms of the initial conditions. For two non-equilibrium models, the time evolution of the photon and pair spectra is determined using the new method. The asymptotic numerical solutions are found to be in a good agreement with the analytical equilibrium states. Astrophysical applications of this scheme are discussed.Comment: 43 pages, 7 postscript figures, to appear in the Astrophysical Journa

    Tunnelling magnetoresistance anomalies of a Coulomb blockaded quantum dot

    Full text link
    We consider quantum transport and tunneling magnetoresistance (TMR) through an interacting quantum dot in the Coulomb blockade regime, attached to ferromagnetic leads. We show that there exist two kinds of anomalies of TMR, which have different origin. One type, associated with TMR sign change and appearing at conductance resonances, is of single particle origin. The second type, inducing a pronounced increase of TMR value far beyond 100%, is caused by electron correlations. It is manifested in-between Coulomb blockade conductance peaks. Both types of anomalies are discussed for zero and finite bias and their robustness to the temperature increase is also demonstrated. The results are presented in the context of recent experiments on semiconductor quantum dots in which similar features of TMR have been observed.Comment: 10 pages, 7 figures, Revtex style, to appaear in Phys. Rev. B extended discussion added, some typographic errors correcte

    Signatures of spin in the n=1/3 Fractional Quantum Hall Effect

    Get PDF
    The activation gap Delta of the fractional quantum Hall state at constant filling n =1/3 is measured in wide range of perpendicular magnetic field B. Despite the full spin polarization of the incompressible ground state, we observe a sharp crossover between a low-field linear dependence of Delta on B associated to spin texture excitations and a Coulomb-like behavior at large B. From the global gap-reduction we get information about the mobility edges in the fractional quantum Hall regime.Comment: 4 pages, 3 figure

    Surface decorated silicon nanowires: a route to high-ZT thermoelectrics

    Get PDF
    Based on atomistic calculations of electron and phonon transport, we propose to use surface decorated Silicon nanowires (SiNWs) for thermoelectric applications. Two examples of surface decorations are studied to illustrate the underlying deas: Nanotrees and alkyl functionalized SiNWs. For both systems we find, (i) that the phonon conductance is significantly reduced compared to the electronic conductance leading to high thermoelectric figure of merit, ZTZT, and (ii) for ultra-thin wires surface decoration leads to significantly better performance than surface disorder.Comment: Accepted for PR

    Tunable graphene system with two decoupled monolayers

    Get PDF
    The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them
    corecore