1,640 research outputs found
Long-Term Cost of the America's Healthy Future Act of 2009; As Passed by the Senate Finance Committee
Estimates the impact of the Senate Finance Committee's healthcare reform bill on health insurance coverage rates and net spending by federal, state, and local government with offsets; private employers; and families of various ages from 2010 through 2019
Mullite Whiskers and Mullite-whisker Felt
The Naval Surface Warfare Center has developed processes for the preparation of mullite (3(Al2O3)(dot)2(SiO2)) whiskers and mullite-whisker felt. Three patents on the technology were issued in 1990. The processes are based on chemical reactions between AlF3, Al2O3, and SiO2. The felt is formed in-situ during the processing of shaped powdered precursors. It consists of randomly oriented whiskers which are mutually intergrown forming a rigid structure. The microstructure and properties of the felt and size of the whiskers can be modified by varying the amount of Al2O3 in the starting mixture. Loose mullite whiskers can be used as a reinforcement for polymer-, metal-, and ceramic-matrix composites. The felt can be used as preforms for fabricating composite materials as well as for thermal insulation and high temperature, chemically stable filters for liquids (melts) and gases
Direct methane conversion to methanol by ionic liquid-dissolved platinum catalysts
Ternary systems of inorganic Pt salts and oxides, ionic liquids and concentrated sulfuric acid are effective at catalyzing the direct, selective oxidation of methane to methanol and appear to be more water tolerant than the Catalytica reaction
Habitat connectivity in coastal environments: patterns and movements of Caribbean coral reef fishes with emphasis on Bluestriped Grunt, Haemulon sciurus
Habitat connectivity within tropical marine seascapes may be greatly dependent on the movement of large organisms, particularly fishes. Using visual and trap sampling within two small bays in Virgin Islands National Park/Biosphere Reserve, St. John, U.S. Virgin Islands, we documented that large coral reef fishes, particularly large adult grunts, which shelter by day on coral reefs and make nocturnal feeding migrations into seagrass beds, accounted for the greatest biomass and abundance of fishes sampled in seagrass habitat. Using passive tags and sonic telemetry, we documented the nocturnal migration patterns of large adult grunts (bluestriped grunts, Haemulon sciurus), which are similar to the well-documented migration patterns of juvenile grunts. Large grunts showed high site fidelity to nocturnal foraging sites in seagrass beds. Sonictagged grunts demonstrated little movement in their diurnal shelter sites in the boulder-coral zone, with most individuals making nocturnal migrations into the adjacent seagrass bed. These results provide evidence for strong linkage among adjacent habitats at a small spatial scale and emphasize the importance of inclusion of a diversity of habitats in Marine Protected Areas
Calculating and Mitigating the Risk of a Cut Glove to a Space Walking Astronaut
One of the high risk operations on the International Space Station (ISS) is conducting a space walk, or an Extra Vehicular Activity (EVA). Threats to the space walking crew include airlock failures, space suit failures, and strikes from micro ]meteoroids and orbital debris (MM/OD). There are risks of becoming untethered from the space station, being pinched between the robotic arm and a piece of equipment, tearing your suit on a sharp edge, and other human errors that can be catastrophic. For decades NASA identified and tried to control sharp edges on external structure and equipment by design; however a new and unexpected source of sharp edges has since become apparent. Until recently, one of the underappreciated environmental risks was damage to EVA gloves during a spacewalk. The ISS has some elements which have been flying in the environment of space for over 14 years. It has and continues to be bombarded with MM/OD strikes that have created small, sharp craters all over the structure, including the dedicated EVA handrails and surrounding structure. These craters are capable of cutting through several layers of the EVA gloves. Starting in 2006, five EVA crewmembers reported cuts in their gloves so large they rendered the gloves unusable and in some cases cut the spacewalk short for the safety of the crew. This new hazard took engineers and managers by surprise. NASA has set out to mitigate this risk to safety and operations by redesigning the spacesuit gloves to be more resilient and designing a clamp to isolate MM/OD strikes on handrails, and is considering the necessity of an additional tool to repair strikes on non ]handrail surfaces (such as a file). This paper will address how the ISS Risk Team quantified an estimate of the MM/OD damage to the ISS, and the resulting likelihood of sustaining a cut glove in order to measure the effectiveness of the solutions being investigated to mitigate this risk to the mission and crew
Modeling Common Cause Failures of Thrusters on ISS Visiting Vehicles
This paper discusses the methodology used to model common cause failures of thrusters on the International Space Station (ISS) Visiting Vehicles. The ISS Visiting Vehicles each have as many as 32 thrusters, whose redundancy and similar design make them susceptible to common cause failures. The Global Alpha Model (as described in NUREG/CR-5485) can be used to represent the system common cause contribution, but NUREG/CR-5496 supplies global alpha parameters for groups only up to size six. Because of the large number of redundant thrusters on each vehicle, regression is used to determine parameter values for groups of size larger than six. An additional challenge is that Visiting Vehicle thruster failures must occur in specific combinations in order to fail the propulsion system; not all failure groups of a certain size are critical
International Space Station Spacecraft Charging Hazards: Hazard Identification, Management, and Control Methodologies, with Possible Applications to Human Spaceflight Beyond LEO
In this paper, we present an overview of how the International Space Station (ISS) safety engineering methodology directed to controlling extravehicular activity (EVA) crew electrical shock hazards, caused by ISS spacecraft charging, has evolved over the past 25+ years. Long-term measurements of ISS charging severity and frequency-of-occurrence, combined with detailed probabilistic analysis of EVA electric shock- circuit completion, led to a change in hazard control methodology. The requirement for two-fault tolerant EVA shock hazard control during all EVAs was replaced with a less operationally burdensome and risky EVA shock hazard detection and warning process. The applicability of event probability-based detection-and- warning processes to human spaceflight charging hazard control beyond low-earth orbit (LEO) is also considered
International Space Station Spacecraft Charging Hazards: Hazard Identification, Management, and Control Methodologies, with Possible Applications to Human Spaceflight Beyond LEO
No abstract availabl
Quantitative Risk Modeling of Fire on the International Space Station
The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program
- …
