494 research outputs found

    Coulomb Correlations and the Wigner-Mott Transition

    Full text link
    Strong correlation effects, such as a dramatic increase in the effective mass of the carriers of electricity, recently observed in the low density electron gas have provided spectacular support for the existence of a sharp metal-insulator transitions in dilute two dimensional electron gases. Here we show that strong correlations, normally expected only for narrow integer filled bands, can be effectively enhanced even far away from integer filling, due to incipient charge ordering driven by non-local Coulomb interactions. This general mechanism is illustrated by solving an extended Hubbard model using dynamical mean-field theory. Our findings account for the key aspects of the experimental phase diagram, and reconcile the early view points of Wigner and Mott. The interplay of short range charge order and local correlations should result in a three peak structure in the spectral function of the electrons which should be observable in tunneling and optical spectroscopy.Comment: 5 pages, 5 figures. Accepted in Nature Physic

    Electronic structure of Pu and Am metals by self consistent relativistic GW

    Full text link
    We present the results of calculations for Pu and Am performed using an implementation of self-consistent relativistic GW method. The key feature of our scheme is to evaluate polarizability and self-energy in real space and Matsubara's time. We compare our GW results with the calculations using local density (LDA) and quasiparticle (QP) approximations and also with scalar-relativistic calculations. By comparing our calculated electronic structures with experimental data, we highlight the importance of both relativistic effects and effects of self-consistency in this GW calculation.Comment: 19 pages,10 figure

    Strong Coupling Solver for the Quantum Impurity Model

    Get PDF
    We propose a fast impurity solver for the general quantum impurity model based on the perturbation theory around the atomic limit, which can be used in combination with the local density approximation (LDA) and the dynamical mean field theory (DMFT). We benchmark the solver in the two band Hubbard model within DMFT against quantum Monte Carlo (QMC) and numerical renormalization group (NRG) results. We find that the solver works very well in the paramagnetic Mott insulator phase. We also apply this impurity solver to the DMFT study of the anti-ferromagnetic phase transition in the unfrustrated Bethe lattice. The Neel temperature obtained by the fast impurity solver agrees very well with the QMC results in the large Hubbard U limit. The method is a promising tool to be used in combination with the LDA+DMFT to study Mott insulators starting from first principles.Comment: 5 pages, 5 figures. to be published in Physical Review

    A dynamical mean-field theory study of Nagaoka ferromagnetism

    Full text link
    We revisit Nagaoka ferromagnetism in the U=oo Hubbard model within the dynamical mean-field theory (DMFT) using the recently developed continuous time quantum Monte Carlo method as the impurity solver. The stability of Nagaoka ferromagnetism is studied as a function of the temperature, the doping level, and the next-nearest-neighbor lattice hopping t'. We found that the nature of the phase transition as well as the stability of the ferromagnetic state is very sensitive to the t' hopping. Negative t'=-0.1t stabilizes ferromagnetism up to higher doping levels. The paramagnetic state is reached through a first order phase transition. Alternatively, a second order phase transition is observed at t'=0. Very near half-filling, the coherence temperature T_{coh} of the paramagnetic metal becomes very low and ferromagnetism evolves out of an incoherent metal rather than conventional Fermi liquid. We use the DMFT results to benchmark slave-boson method which might be useful in more complicated geometries.Comment: 10 pages, 11 figure

    Self consistent GW determination of the interaction strength: application to the iron arsenide superconductors

    Full text link
    We introduce a first principles approach to determine the strength of the electronic correlations based on the fully self consistent GW approximation. The approach provides a seamless interface with dynamical mean field theory, and gives good results for well studied correlated materials such as NiO. Applied to the recently discovered iron arsenide materials, it accounts for the noticeable correlation features observed in optics and photoemission while explaining the absence of visible satellites in X-ray absorption experiments and other high energy spectroscopies.Comment: 3 figs, 4 page

    Phase diagram, energy scales and nonlocal correlations in the Anderson lattice model

    Get PDF
    We study the Anderson lattice model with one f-orbital per lattice site as the simplest model which describes generic features of heavy fermion materials. The resistivity and magnetic susceptibility results obtained within dynamical mean field theory (DMFT) for a nearly half-filled conduction band show the existence of a single energy scale TT^* which is similar to the single ion Kondo temperature TKoT_K^o. To determine the importance of inter-site correlations, we have also solved the model within cellular DMFT (CDMFT) with two sites in a unit cell. The antiferromagnetic region on the phase diagram is much narrower than in the single-site solution, having a smaller critical hybridization VcV_c and N\'eel temperature TNT_N. At temperatures above TNT_N the nonlocal correlations are small, and the DMFT paramagnetic solution is in this case practically exact, which justifies the ab initio LDA+DMFT approach in theoretical studies of heavy fermions. Strong inter-site correlations in the CDMFT solution for T<TNT<T_N, however, indicate that they have to be properly treated in order to unravel the physical properties near the quantum critical point.Comment: 10 page
    corecore