517 research outputs found
Impact de pollutions ponctuelles sur les phytocénoses des rivières acides à neutres du Limousin (Massif Central, France)
L'impact des pollutions ponctuelles sur les phytocénoses aquatiques est étudié autour des rejets de 12 agglomérations dont 9 sont équipées d'une station d'épuration. Un échantillonnage systématique avec segmentation du cours d'eau autour de chaque rejet est réalisé. Sur chaque secteur, des relevés de végétation sont pratiqués au niveau de faciès d'écoulements homogènes dont on caractérise le milieu physique parallèlement à une analyse physicochimique de l'eau.L'ensemble des rejets provoque globalement une élévation de la conductivité, des teneurs en ammonium, nitrates et orthophosphates.Cela ce traduit par la régression de la phytocénose à Callitriche hamulata et Myriophyllum alterniflorum, par le développement de Ranunculus peltatus, Callitriche platycarpa et d'espèces cryptogames telles que Leptodyctium riparium, ou Melosira sp.Une Analyse en Composantes Principales menée sur l'ensemble des données permet d'opposer des phytocénoses propres aux secteurs amonts (Scapania undulata, Chiloscyphus polyanthus) à d'autres situées au niveau de rejets (Callitriche platycarpa, Leptodictyum riparium, Melosira sp.,).Une Analyse Canonique de Correspondances valide le déterminisme de la qualité physicochimique de l'eau sur la végétation. La conductivité, les teneurs en ammonium, nitrates et orthophosphates deviennent prépondérants par rapport aux facteurs du milieu physique classiquement discriminants dans l'installation des phytocénoses dans les rivières limousines.The impact of located pollution on aquatic phytocénoses is studied around 12 cities discharge. Nine of them are fitted out purification plant.The sampling method is based on consecutive segments from upstream to downstream. On each sector, vegetation records are realized in homogeneous water runoff facies, which are characterized by physical factors as well as water value measures.The whole discharge leads globally to an increase of conductivity, ammonium amount, nitrates and orthophosphates. The consequence of that is a decrease of Callitriche hamulata and Myriophyllum alterniflorum phytocénoses, a development of Ranunculus peltatus, Callitriche platycarpa and cryptogams species like Leptodictyum riparium or Melosira sp.A Component Principal Analysis applied on data, distinguishes phytocénoses belonging to upstream sectors (Scapania undulata, Chiloscyphus polyanthus) from the ones of discharges (Callitriche platycarpa, Leptodictyum riparium, Melosira sp.).A Canonical Correspondence Analysis validates the impact of physico-chemical water quality on vegetation. Conductivity, ammonium amount, nitrates and orthophosphates become more preponderant in comparison with physical environments usually discriminant for phytocénoses installation in Limousin rivers
Theory of Magnetic Anisotropy in III_{1-x}Mn_{x}V Ferromagnets
We present a theory of magnetic anisotropy in diluted magnetic semiconductors with carrier-induced
ferromagnetism. The theory is based on four and six band envelope functions
models for the valence band holes and a mean-field treatment of their exchange
interactions with ions. We find that easy-axis reorientations
can occur as a function of temperature, carrier density , and strain. The
magnetic anisotropy in strain-free samples is predicted to have a
hole-density dependence at small , a dependence at large , and
remarkably large values at intermediate densities. An explicit expression,
valid at small , is given for the uniaxial contribution to the magnetic
anisotropy due to unrelaxed epitaxial growth lattice-matching strains. Results
of our numerical simulations are in agreement with magnetic anisotropy
measurements on samples with both compressive and tensile strains. We predict
that decreasing the hole density in current samples will lower the
ferromagnetic transition temperature, but will increase the magnetic anisotropy
energy and the coercivity.Comment: 15 pages, 15 figure
Stability of trions in strongly spin-polarized two-dimensional electron gases
Low-temperature magneto-photoluminescence studies of negatively charged
excitons (X- trions) are reported for n-type modulation-doped ZnSe/Zn(Cd,Mn)Se
quantum wells over a wide range of Fermi energy and spin-splitting. The
magnetic composition is chosen such that these magnetic two-dimensional
electron gases (2DEGs) are highly spin-polarized even at low magnetic fields,
throughout the entire range of electron densities studied (5e10 to 6.5e11
cm^-2). This spin polarization has a pronounced effect on the formation and
energy of X-, with the striking result that the trion ionization energy (the
energy separating X- from the neutral exciton) follows the temperature- and
magnetic field-tunable Fermi energy. The large Zeeman energy destabilizes X- at
the nu=1 quantum limit, beyond which a new PL peak appears and persists to 60
Tesla, suggesting the formation of spin-triplet charged excitons.Comment: 5 pages (RevTex), 4 embedded EPS figs. Submitted to PRB-R
Theory of Magnetic Properties and Spin-Wave Dispersion for Ferromagnetic (Ga,Mn)As
We present a microscopic theory of the long-wavelength magnetic properties of
the ferromagnetic diluted magnetic semiconductor (Ga,Mn)As. Details of the host
semiconductor band structure, described by a six-band Kohn-Luttinger
Hamiltonian, are taken into account. We relate our quantum-mechanical
calculation to the classical micromagnetic energy functional and determine
anisotropy energies and exchange constants. We find that the exchange constant
is substantially enhanced compared to the case of a parabolic heavy-hole-band
model.Comment: 9 pages, 4 figure
A theory of ferromagnetism in planar heterostructures of (Mn,III)-V semiconductors
A density functional theory of ferromagnetism in heterostructures of compound
semiconductors doped with magnetic impurities is presented. The variable
functions in the density functional theory are the charge and spin densities of
the itinerant carriers and the charge and localized spins of the impurities.
The theory is applied to study the Curie temperature of planar heterostructures
of III-V semiconductors doped with manganese atoms. The mean-field,
virtual-crystal and effective-mass approximations are adopted to calculate the
electronic structure, including the spin-orbit interaction, and the magnetic
susceptibilities, leading to the Curie temperature. By means of these results,
we attempt to understand the observed dependence of the Curie temperature of
planar -doped ferromagnetic structures on variation of their
properties. We predict a large increase of the Curie Temperature by additional
confinement of the holes in a -doped layer of Mn by a quantum well.Comment: 8 pages, 7 figure
Observation of the spin-charge thermal isolation of ferromagnetic Ga_{0.94}Mn_{0.06}As by time-resolved magneto-optical measurement
The dynamics of magnetization under femtosecond optical excitation is studied
in a ferromagnetic semiconductor Ga_{0.94}Mn_{0.06}As with a time-resolved
magneto-optical Kerr effect measurement with two color probe beams. The
transient reflectivity change indicates the rapid rise of the carrier
temperature and relaxation to a quasi-thermal equilibrium within 1 ps, while a
very slow rise of the spin temperature of the order of 500ps is observed. This
anomalous behavior originates from the thermal isolation between the charge and
spin systems due to the spin polarization of carriers (holes) contributing to
ferromagnetism. This constitutes experimental proof of the half-metallic nature
of ferromagnetic Ga_{0.94}Mn_{0.06}As arising from double exchange type
mechanism originates from the d-band character of holes
Ferromagnetism in semiconductors and oxides: prospects from a ten years' perspective
Over the last decade the search for compounds combining the resources of
semiconductors and ferromagnets has evolved into an important field of
materials science. This endeavour has been fuelled by continual demonstrations
of remarkable low-temperature functionalities found for ferromagnetic
structures of (Ga,Mn)As, p-(Cd,Mn)Te, and related compounds as well as by ample
observations of ferromagnetic signatures at high temperatures in a number of
non-metallic systems. In this paper, recent experimental and theoretical
developments are reviewed emphasising that, from the one hand, they disentangle
many controversies and puzzles accumulated over the last decade and, on the
other, offer new research prospects.Comment: review, 13 pages, 8 figures, 109 reference
The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures
Motivation: Biomarker discovery from high-dimensional data is a crucial
problem with enormous applications in biology and medicine. It is also
extremely challenging from a statistical viewpoint, but surprisingly few
studies have investigated the relative strengths and weaknesses of the plethora
of existing feature selection methods. Methods: We compare 32 feature selection
methods on 4 public gene expression datasets for breast cancer prognosis, in
terms of predictive performance, stability and functional interpretability of
the signatures they produce. Results: We observe that the feature selection
method has a significant influence on the accuracy, stability and
interpretability of signatures. Simple filter methods generally outperform more
complex embedded or wrapper methods, and ensemble feature selection has
generally no positive effect. Overall a simple Student's t-test seems to
provide the best results. Availability: Code and data are publicly available at
http://cbio.ensmp.fr/~ahaury/
Algebraic Comparison of Partial Lists in Bioinformatics
The outcome of a functional genomics pipeline is usually a partial list of
genomic features, ranked by their relevance in modelling biological phenotype
in terms of a classification or regression model. Due to resampling protocols
or just within a meta-analysis comparison, instead of one list it is often the
case that sets of alternative feature lists (possibly of different lengths) are
obtained. Here we introduce a method, based on the algebraic theory of
symmetric groups, for studying the variability between lists ("list stability")
in the case of lists of unequal length. We provide algorithms evaluating
stability for lists embedded in the full feature set or just limited to the
features occurring in the partial lists. The method is demonstrated first on
synthetic data in a gene filtering task and then for finding gene profiles on a
recent prostate cancer dataset
- …
