23,302 research outputs found

    A theoretical analysis of the current-voltage characteristics of solar cells

    Get PDF
    Various mechanisms which limit the conversion efficiency of silicon solar cells were studied. The effects of changes in solar cell geometry such as layer thickness on performance were examined. The effects of various antireflecting layers were also examined. It was found that any single film antireflecting layer results in a significant surface loss of photons. The use of surface texturing techniques or low loss antireflecting layers can enhance by several percentage points the conversion efficiency of silicon cells. The basic differences between n(+)-p-p(+) and p(+)-n-n(+) cells are treated. A significant part of the study was devoted to the importance of surface region lifetime and heavy doping effects on efficiency. Heavy doping bandgap reduction effects are enhanced by low surface layer lifetimes, and conversely, the reduction in solar cell efficiency due to low surface layer lifetime is further enhanced by heavy doping effects. A series of computer studies is reported which seeks to determine the best cell structure and doping levels for maximum efficiency

    A theoretical analysis of the current-voltage characteristics of solar cells

    Get PDF
    The current-voltage characteristics and efficiencies of solar cells are discussed. For one solar cell structure detailed curves are presented which include carrier densities, current densities, potential, and quasi-Fermi levels at different voltage levels both with and without optically generated carriers (AMO conditions). In addition some results are presented concerning the influence of various parameter variations such as lifetime, cell thickness, and high-low junction width on solar cell performance

    Broadband multi-wavelength campaign on PKS 2005-489

    Full text link
    The spectral energy distribution (SED) of high-frequency peaked BL Lac objects (HBL) is characterized by two peaks: one in the UV-X-ray and one in the GeV-TeV regime. An interesting object for analyzing these broadband characteristics is PKS 2005-489, which in 2004 showed the softest TeV spectrum ever measured. In 2009, a multi-wavelength campaign has been conducted with, for the first time, simultaneous observations by H.E.S.S. (TeV), Fermi/LAT (GeV), RXTE (keV), Swift (keV, UV, optical) and ATOM (optical) to cover the two peaks of the SED. During this campaign PKS 2005-489 underwent a high state in all wavebands which gives the opportunity to study in detail the emission processes of a high state of this interesting HBL.Comment: 2009 Fermi Symposium; eConf Proceedings C09112

    Determination of the Far-Infrared Cosmic Background Using COBE/DIRBE and WHAM Data

    Full text link
    Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of the far infrared CIB (e.g., Hauser et al. 1998) were based on the detection of residual isotropic emission in skymaps from which the emission from interplanetary dust and the neutral interstellar medium were removed. In this paper we use the Wisconsin H-alpha Mapper (WHAM) Northern Sky Survey as a tracer of the ionized medium to examine the effect of this foreground component on determination of the CIB. We decompose the DIRBE far infrared data for five high Galactic latitude regions into H I and H-alpha correlated components and a residual component. We find the H-alpha correlated component to be consistent with zero for each region, and we find that addition of an H-alpha correlated component in modeling the foreground emission has negligible effect on derived CIB results. Our CIB detections and 2 sigma upper limits are essentially the same as those derived by Hauser et al. and are given by nu I_nu (nW m-2 sr-1) < 75, < 32, 25 +- 8, and 13 +- 3 at 60, 100, 140, and 240 microns, respectively. Our residuals have not been subjected to a detailed anisotropy test, so our CIB results do not supersede those of Hauser et al. We derive upper limits on the 100 micron emissivity of the ionized medium that are typically about 40% of the 100 micron emissivity of the neutral atomic medium. This low value may be caused in part by a lower dust-to-gas mass ratio in the ionized medium than in the neutral medium, and in part by a shortcoming of using H-alpha intensity as a tracer of far infrared emission.Comment: 38 pages, 8 figures. Accepted for publication in Ap

    Imperfect Homoclinic Bifurcations

    Full text link
    Experimental observations of an almost symmetric electronic circuit show complicated sequences of bifurcations. These results are discussed in the light of a theory of imperfect global bifurcations. It is shown that much of the dynamics observed in the circuit can be understood by reference to imperfect homoclinic bifurcations without constructing an explicit mathematical model of the system.Comment: 8 pages, 11 figures, submitted to PR

    Measurements of the composition of aerosol component of Venusian atmosphere with Vega 1 lander, preliminary data

    Get PDF
    Preliminary investigation of mass spectra of gaseous products of pyrolyzed Venusian cloud particles collected and analyzed by the complex device of mass-spectrometer and collector pyrolyzer on board Vega 1 lander revealed the presence of heavy particles in the upper cloud layer. Based on 64 amu peak (SO2+), an estimate of the lower limit of the sulfuric acid aerosol content at the 62 to 54 km heights of approximately 2.0 mg/cu m is obtained. A chlorine line (35 and 37 amu) is also present in the mass spectrum with a lower limit of the chlorine concentration of approximately 0.3 mg/ cu m

    Effect of spin orbit scattering on the magnetic and superconducting properties of nearly ferromagnetic metals: application to granular Pt

    Full text link
    We calculate the effect of scattering on the static, exchange enhanced, spin susceptibility and show that in particular spin orbit scattering leads to a reduction of the giant moments and spin glass freezing temperature due to dilute magnetic impurities. The harmful spin fluctuation contribution to the intra-grain pairing interaction is strongly reduced opening the way for BCS superconductivity. We are thus able to explain the superconducting and magnetic properties recently observed in granular Pt as due to scattering effects in single small grains.Comment: 9 pages 3 figures, accepted for publication in Phys. Rev. Letter

    Bandit Models of Human Behavior: Reward Processing in Mental Disorders

    Full text link
    Drawing an inspiration from behavioral studies of human decision making, we propose here a general parametric framework for multi-armed bandit problem, which extends the standard Thompson Sampling approach to incorporate reward processing biases associated with several neurological and psychiatric conditions, including Parkinson's and Alzheimer's diseases, attention-deficit/hyperactivity disorder (ADHD), addiction, and chronic pain. We demonstrate empirically that the proposed parametric approach can often outperform the baseline Thompson Sampling on a variety of datasets. Moreover, from the behavioral modeling perspective, our parametric framework can be viewed as a first step towards a unifying computational model capturing reward processing abnormalities across multiple mental conditions.Comment: Conference on Artificial General Intelligence, AGI-1
    corecore