3,580 research outputs found

    Manufacturing with the Sun

    Get PDF
    Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface

    Mars Propellant Liquefaction and Storage Performance Modeling using Thermal Desktop with an Integrated Cryocooler Model

    Get PDF
    NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates

    Unstructured Direct Elicitation of Decision Rules

    Get PDF
    We investigate the feasibility of unstructured direct-elicitation (UDE) of decision rules consumers use to form consideration sets. With incentives to think hard and answer truthfully, tested formats ask respondents to state non-compensatory, compensatory, or mixed rules for agents who will select a product for the respondents. In a mobile-phone study two validation tasks (one delayed 3 weeks) ask respondents to indicate which of 32 mobile phones they would consider from a fractional 4[superscript 5]x2[superscript 2] design of features and levels. UDE predicts consideration sets better, across profiles and across respondents, than a structured direct-elicitation method (SDE). It predicts comparably to established incentive-aligned compensatory, non-compensatory, and mixed decompositional methods. In a more-complex (20x7x5[superscript 2]x4x3[superscript 4]x2[superscript 2]) automobile study, non-compensatory decomposition is not feasible and additive-utility decomposition is strained, but UDE scales well. Incentives are aligned for all methods using prize indemnity insurance to award a chance at $40,000 for an automobile plus cash. UDE predicts consideration sets better than either additive decomposition or an established SDE method (Casemap). We discuss the strengths and weaknesses of UDE relative to established methods.Research Grants Council (Hong Kong, China) (SAR (9041182, CityU 1454/06H))Pennsylvania State University (Smeal Small Research Grant

    Liquefaction and Storage of In-Situ Oxygen on the Surface of Mars

    Get PDF
    The In-Situ production of propellants for Martian and Lunar missions has been heavily discussed since the mid 1990's. One portion of the production of the propellants is the liquefaction, storage, and delivery of the propellants to the stage tanks. Two key technology development efforts are required: large refrigeration systems (cryocoolers) to perform the liquefaction and high performance insulation within a soft vacuum environment. Several different concepts of operation may be employed to liquefy the propellants based on how and where these two technologies are implemented. The concepts that were investigated include: using an accumulator tank to store the propellant until it is needed, liquefying in the flow stream going into the tank, and liquefying in the flight propellant tank itself. The different concept of operations were studied to assess the mass and power impacts of each concept. Additionally, the trade between insulation performance and cryocooler mass was performed to give performance targets for soft vacuum insulation development. It was found that liquefying within the flight propellant tank itself adds the least mass and power requirements to the mission

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    corecore